Зачем нам ооп и что это такое. Объектно-ориентированное программирование Ооп состоит из

Концепция объектно-ориентированного программирования (ООП) появилась более сорока лет назад, как развитие идей процедурного программирования. Идеология процедурного программирования, на мой взгляд, ничего особенного собой не представляет: все программы представлены набором процедур и функций, в то время как сами процедуры и функции – это последовательности операторов, выполняя которые модифицирует значения переменных в памяти. Основная программа в процедурном программировании также является процедурой (функцией), в теле которой могут быть вызовы других процедур и функций – подпрограмм. Суть процедурного программирования проста: данные отдельно, поведение отдельно. То (какие конструкции в него входят), я постарался собрать в отдельном разделе. Разделение кода на подпрограммы, во-первых, позволяет , а во-вторых, .

Идеология объектно-ориентированного программирования, как следует из самого названия, строится вокруг понятия объект. Объект объединяет в себе и данные и поведение. Объект – это любая сущность, с которой имеет дело программа, а именно: объекты предметной области, моделируемые программой; ресурсы операционной системы; сетевые протоколы и многое другое. По сути, объект – это та же , но дополненная процедурами и функциями, управляющими элементами этой структуры. К примеру, в процедурном языке программирования отдельно была бы создана переменная для хранения имени файла и отдельно – для хранения его дескриптора (уникальный идентификатор ресурса в операционной системе), а также ряд процедур работы с файлом: открыть файл, прочитать данные из файла и закрыть файл. Все бы эти процедуры, помимо обычных параметров и переменных для хранения результата, обязаны были бы принимать тот самый дескриптор, чтобы понять, о каком именно файле идет речь. В объектно-ориентированном языке для этих же целей был бы описан объект-файл, который также бы хранил внутри себя имя и дескриптор и предоставлял бы пользователю процедуры для открытия, чтения и закрытия себя самого (файла, ассоциированного с конкретным объектом). Разница была бы в том, что дескриптор был бы скрыт от остальной части программы, создавался бы в коде процедуры открытия файла и использовался бы неявно только самим объектом. Таким образом, пользователю объекта (программному коду внешней по отношению к объекту программы) не нужно было бы передавать дескриптор каждый раз в параметрах процедур. Объект – это комплект данных и методов работы с этими данными, часть из которых может быть скрыта от окружающего его мира, к которой и относятся детали реализации. Более подробно о терминологии объектно-ориентированного программирования будет рассказано далее.

Объектом в объектно-ориентированном языке программирования является практически все, за исключением операторов: и являются объектами, и описание ошибки является объектом и, наконец, основная программа также является объектом. Осталось понять, что такое объект с точки зрения самой программы, как он создается и используется. Вторым основополагающим понятием ООП является класс. Класс – это тот самый новый в сравнении с процедурным программированием тип данных, экземпляры которого и называются объектами. Класс, как уже было сказано, похож на составной тип данных или структуру, но дополненный процедурами и функциями (методами) для работы со своими данными. Теперь самое время описать основные термины объектно-ориентированного программирования.

Терминология объектно-ориентированного программирования

Перед тем, как перейти к описанию преимуществ, которые дает ООП разработчикам программного обеспечения в процессе , и программных продуктов необходимо познакомиться с наиболее часто встречающимися терминами в этом области.

Класс – тип данных, описывающий структуру и поведение объектов.

Объект – экземпляр класса.

Поле – элемент данных класса: переменная элементарного типа, структура или другой класс, являющийся частью класса.

Состояние объекта – набор текущих значений полей объекта.

Метод – процедура или функция, выполняющаяся в контексте объекта, для которого она вызывается. Методы могут изменять состояние текущего объекта или состояния объектов, передаваемых им в качества параметров.

Свойство – специальный вид методов, предназначенный для модификации отдельных полей объекта. Имена свойств обычно совпадают с именами соответствующих полей. Внешне работа со свойствами выглядит точно так же, как работа с полями структуры или класса, но на самом деле перед тем, как вернуть или присвоить новое значение полю может быть выполнен программный код, осуществляющий разного рода проверки, к примеру, проверку на допустимость нового значения.

Член класса – поля, методы и свойства класса.

Модификатор доступа – дополнительная характеристика членов класса, определяющая, имеется ли к ним доступ из внешней программы, или же они используются исключительно в границах класса и скрыты от окружающего мира. Модификаторы доступа разделяют все элементы класса на детали реализации и открытый или частично открытый интерфейс.

Конструктор – специальный метод, выполняемый сразу же после создания экземпляра класса. Конструктор инициализирует поля объекта – приводит объект в начальное состояние. Конструкторы могут быть как с параметрами, так и без. Конструктор без параметров называют конструктором по умолчанию, который может быть только один. Имя метода конструктора, чаще всего, совпадает с именем самого класса.

Деструктор – специальный метод, вызываемый средой исполнения программы в момент, когда объект удаляется из оперативной памяти. Деструктор используется в тех случаях, когда в состав класса входят ресурсы, требующие явного освобождения (файлы, соединения с базами данных, сетевые соединения и т.п.)

Интерфейс – набор методов и свойств объекта, находящихся в открытом доступе и призванных решать определенный круг задач, к примеру, интерфейс формирования графического представления объекта на экране или интерфейс сохранения состояния объекта в файле или базе данных.

Статический член – любой элемент класса, который может быть использован без создания соответствующего объекта. К примеру, если метод класса не использует ни одного поля, а работает исключительно с переданными ему параметрами, то ничто не мешает его использовать в контексте всего класса, не создавая отдельных его экземпляров. Константы в контексте класса обычно всегда являются статическими его членами.

На этом с терминологией ООП далеко еще не все, но остальные понятия, связанные с этой парадигмой будут рассмотрены в следующем разделе.

Преимущества объектно-ориентированного программирования

Теперь поговорим о свойствах, которые приобретает программа при использовании объектно-ориентированного подхода к ее проектированию и кодированию. Как мне кажется, большинство этих свойств являются преимуществами ООП, но есть на этот счет и другие мнения…

    Инкапсуляция обозначает сокрытие деталей реализации классов средствами награждения отдельных его членов соответствующими модификаторами доступа. Таким образом, вся функциональность объекта, нацеленная на взаимодействие с другими объектами программы группируется в открытый интерфейс, а детали тщательно скрываются внутри, что избавляет основной код бизнес-логики от ненужных ему вещей. Инкапсуляция повышает надежность работы программного кода, поскольку гарантирует, что определенные данные не могут быть изменены за пределами содержащего их класса.

    Наследование . Краеугольный камень ООП. В объектно-ориентированном программировании есть возможность наследовать структуру и поведение класса от другого класса. Класс, от которого наследуют, называется базовым или суперклассом, а класс, который получается вследствие наследования – производным или просто потомком. Любой класс может выступать как в роли суперкласса, так и в роли потомка. Связи наследования классов образуют иерархию классов. Множественным наследованием называют определение производного класса сразу от нескольких суперклассов. Не все объектно-ориентированные языки программирования поддерживают множественное наследование. Наследование – это эффективный способ выделения многократно используемых фрагментов кода, но у него есть и минусы, о которых будет рассказано далее.

    Абстрагирование . Возможность объединять классы в отдельные группы, выделяя общие, значимые для них всех характеристики (общие поля и общее поведение). Собственно, абстрагирование и есть следствие наследования: базовые классы не всегда имеют свою проекцию на объекты реального мира, а создаются исключительно с целью выделить общие черты целой группы объектов. К примеру, объект мебель – это базовое понятие для стола, стула и дивана, всех их объединяет то, что это движимое имущество, часть интерьера помещений, и они могут быть выполнены для дома или офиса, а также относиться к “эконом” или “премиум” классу. В ООП есть для этого отдельное понятие абстрактный класс – класс, объекты которого создавать запрещено, но можно использовать в качестве базового класса. Наследование и абстрагирование позволяют описывать структуры данных программы и связи между ними точно так же, как выглядят соответствующие им объекты в рассматриваемой .

    Пример диаграммы классов, построенной путем абстрагирования, в ходе анализа видов существующих транспортных средств приведен на следующем рисунке. На верхних уровнях иерархии наследования находятся абстрактные классы, объединяющие транспортные средства по наиболее значимым характеристикам.


    Диаграмма классов или иерархия наследования "Транспортные средства". Белые квадраты обозначают абстрактные классы.

    Полиморфизм . Еще одно свойство, которое является следствием наследования. Дело в том, что объектно-ориентированные языки программирования позволяют работать с набором объектов из одной иерархии точно так же, как если бы все они были объектами их базового класса. Если вернуться к примеру про мебель, то можно предположить, что в контексте создания информационной системы для мебельного магазина в базовый класс для всех видов мебели разумно добавить общий для всех метод “показать характеристики”. При распечатке характеристик всех видов товара программа бы без разбору для всех объектов вызывала бы этот метод, а каждый конкретный объект уже сам бы решал, какую информацию ему предоставлять. Как это реализуется: Во-первых, в базовом классе определяют общий для всех метод с общим для всех поведением. В случае с нашим примером это будет метод, печатающий общие для любых типов мебели параметры. Во-вторых, в каждом производном классе, где это необходимо, переопределяют базовый метод (добавляют метод с тем же именем), где расширяют базовое поведение своим, например, выводят характеристики, свойственные только конкретному виду мебельной продукции. Метод в базовом классе иногда вообще не обязан содержать какой-либо код, а необходим только для того, чтобы определить имя и набор параметров – сигнатуру метода. Такие методы называют абстрактными методами, а классы, их содержащие, автоматически становятся абстрактными классами. Итак, полиморфизм – это возможность единообразного общения с объектами разных классов через определенный интерфейс. Идеология полиморфизма гласит, что для общения с объектом вам не нужно знать его тип, а нужно знать, какой интерфейс он поддерживает.

    Интерфейс . В некоторых языках программирования (C#, Java) понятие интерфейса выделено явно - это не только открытые методы и свойства самого класса. Такие языки, как правило, не поддерживают множественного наследования и компенсируют это тем, что любой объект может иметь один базовый объект и реализовывать любое количество интерфейсов. Интерфейс в их интерпретации – это подобие абстрактного класса, содержащего только описание (сигнатуру) открытых методов и свойств. Реализация интерфейса ложится на плечи каждого класса, который собирается его поддерживать. Один и тот же интерфейс могут реализовывать классы абсолютно разных иерархий, что расширяет возможности полиморфизма. К примеру, интерфейс “сохранение/восстановление информации в базе данных” могли бы реализовывать как классы иерархии “мебель”, так и классы, связанные с оформлением заказов на изготовление мебели, а при нажатии на кнопку “сохранить” программа бы прошлась по всем объектами, запросила бы у них этот интерфейс и вызвала бы соответствующий метод.

Объектно-ориентированное программирование постоянно развивается, порождая новые парадигмы, такие как аспектно-ориентированное, субъектно-ориентированное и даже агентно-ориентиванное программирование. Нужно отметит, что лавры ООП не дают покоя остальным теоретикам, и они спешат предложить свои варианты его совершенствования и расширения. Про я написал отдельную заметку, а сейчас хочу пару слов сказать про прототипное программирование, которое реализует язык на стороне клиента JavaScript. Прототипное программирование исключает понятие класса, заменяя его прототипом – образцом объекта. Таким образом, в прототипно-ориентированном языке нет понятия типа объекта, а есть понятие образец или прототип. Прототип – это экземпляр объекта, по которому создаются другие экземпляры, копируя (клонируя) его члены. В JavaScript вы не описываете поля и методы класса, а создаете сначала пустой объект, а потом добавляете ему нужные поля и методы (в JavaScript метод можно определить и добавить к объекту динамически). Точно также создаются и прототипы, на которые потом ссылаются другие объекты, как на свой прообраз. Если у объекта не находится какого-то метода или поля, которое указано в месте вызовы, то оно ищется среди членов его прототипа. То, я также отдельно описал.

Некоторые элементы современного объектно-ориентированного программирования

Время не стоит на месте, да и времени с момента появления ООП уже прошло довольно много, поэтому не стоит удивляться, что сегодня словарь по объектно-ориентированному программированию серьезно разросся. Итак, вот некоторые новые термины и понятия, связанные с ООП.

    События . Специальный вид объектов, создаваемый для оповещения одних объектов о событиях, происходящих с другими объектами. В разных языках программирования механизм событий реализуется по-разному: где-то с помощью специальных синтаксических конструкции, а где-то силами базовых средств ООП.

    Универсальный тип . Концепция универсальных типов не связана непосредственно с концепцией ООП, но она является причиной появление таких элементов, как универсальный класс, универсальный метод, универсальное событие и т.д. Универсальный тип – это тип, параметризованный другим типом (набором типов). Кем является этот тип-параметр в контексте проектирования универсального типа неизвестно, хотя есть возможность ограничить значения типов-параметров, заставив их быть производными от конкретного класса или реализовывать определенные интерфейсы. В качестве примера можно привести универсальный класс сортировки последовательности элементов, где тип элемента в последовательности заранее неизвестен. При проектировании такого класса важно указать, что тип-параметр должен поддерживать операцию сравнения. При создании объектов универсальных типов параметр указывается явно, например целочисленный или строковый тип, а сам объект начинает себя вести так, как если бы это был экземпляр класса, созданный специально для сортировки целых чисел или строк.

    Исключения . Еще один специальный вид объектов, поддерживаемый встроенным в конкретный язык программирования механизмом обработки ошибок и исключительных ситуаций. Исключения, помимо кода ошибки, содержат ее описание, возможные причины возникновения и стек вызовов методов, имевший место до момента возникновения исключения в программе.

Недостатки объектно-ориентированного программирования

Про то, что популярность объектно-ориентированного подхода к огромна я уже сказал. Про то, что тех, кто стремится расширить эту парадигму довольно много, я тоже уже отметил. Но есть еще один способ выделиться среди огромного сообщества специалистов в информационных технологиях – это заявить, что ООП себя не оправдало, что это не панацея, а, скорее, плацебо. Есть среди этих людей действительно специалисты очень высокого класса, такие как , Александр Степанов, Эдсгер Дейкстра и другие, и их мнение заслуживает внимания, но есть и те, про которых говорят, что “плохому танцору всегда что-то мешает”. Вот они, наиболее очевидные недостатки ООП, на которые указывают специалисты:

    ООП порождает огромные иерархии классов, что приводит к тому, что функциональность расползается или, как говорят, размывается по базовым и производным членам класса, и отследить логику работы того или иного метода становится сложно.

    В некоторых языках все данные являются объектами, в том числе и элементарные типы, а это не может не приводить к дополнительным расходам памяти и процессорного времени.

    Также, на скорости выполнения программ может неблагоприятно сказаться реализация полиморфизма, которая основана на механизмах позднего связывания вызова метода с конкретной его реализацией в одном из производных классов.

Объектно-ориентированное программирование (ООП) составляет основу Java. По существу, все программы на Java являются в какой-то степени объектно- ориентированными. Язык Java связан с ООП настолько тесно, что прежде чем приступить к написанию на нем даже простейших программ, следует вначале ознакомиться с основными принципами ООП. Поэтому начнем с рассмотрения тео­ретических вопросов ООП.

Две методики

Все компьютерные программы состоят из двух элементов: кода и данных. Более того, программа концептуально может быть организована вокруг своего кода или своих данных. Иными словами, организация одних программ определяется тем, “что происходит”, а других - тем, “на что оказывается влияние”. Существуют две методики создания программ. Первая из них называется моделью, ориентированной на процессы и характеризует программу как последовательность линейных шагов (т.е. кода). Модель, ориентированную на процессы, можно рассматривать в каче­стве кода, воздействующего на данные. Такая модель довольно успешно применяется в процедурных языках вроде С. Но, как отмечалось в главе 1, подобный подход по­рождает ряд трудностей в связи с увеличением размеров и сложности программ.

С целью преодолеть увеличение сложности программ была начата разработ­ка подхода, называемого объектно-ориентированным программированием. Объектно- ориентированное программирование позволяет организовать программу вокруг ее данных (т.е. объектов) и набора вполне определенных интерфейсов с этими данными. Объектно-ориентированную программу можно охарактеризовать как данные, управляющие доступом к коду. Как будет показано далее, передавая функции управления данными, можно получить несколько организационных преимуществ.

Абстракция

Важным элементом ООП является абстракция. Человеку свойственно представ­лять сложные явления и объекты, прибегая к абстракции. Например, люди представляют себе автомобиль не в виде набора десятков тысяч отдельных деталей, а в виде совершенно определенного объекта, имеющего свое особое поведение. Эта абстракция позволяет не задумываться о сложности деталей, составляющих автомобиль, скажем, при поездке в магазин. Можно не обращать внимания на подробности работы двигателя, коробки передач и тормозной системы. Вместо этого объект можно использовать как единое целое.

Эффективным средством применения абстракции служат иерархические клас­сификации. Это позволяет упрощать семантику сложных систем, разбивая их на более управляемые части. Внешне автомобиль выглядит единым объектом. Но стоит заглянуть внутрь, как становится ясно, что он состоит из нескольких под­систем: рулевого управления, тормозов, аудиосистемы, привязных ремней, обо­гревателя, навигатора и т.п. Каждая из этих подсистем, в свою очередь, собрана из более специализированных узлов. Например, аудиосистема состоит из радиопри­емника, проигрывателя компакт-дисков и/или аудиокассет. Суть всего сказанного состоит в том, что структуру автомобиля (или любой другой сложной системы) можно описать с помощью иерархических абстракций.

Иерархические абстракции сложных систем можно применять и к компьютер­ным программам. Благодаря абстракции данные традиционной, ориентирован­ной на процессы, программы можно преобразовать в составляющие ее объекты, а последовательность этапов процесса - в совокупность сообщений, передавае­мых между этими объектами. Таким образом, каждый из этих объектов описывает свое особое поведение. Эти объекты можно считать конкретными сущностями, реагирующими на сообщения, предписывающие им вътолнитьконкретное действие. В этом, собственно, и состоит вся суть ООП.

Принципы ООП лежат как в основе языка Java, так и восприятия мира человеком. Важно понимать, каким образом эти принципы реализуются в программах. Как станет ясно в дальнейшем, ООП яаляется еще одной, но более эффективной и естественной методикой создания программ, способных пережить неизбежные изменения, сопро­вождающие жизненный цикл любого крупного программного проекта, включая за­рождение общего замысла, развитие и созревание. Например, при наличии тщатель­но определенных объектов и ясных, надежных интерфейсов с этими объектам можно безбоязненно и без особого труда извлекать или заменять части старой системы.

Три принципа ООП

Все языки объектно-ориентированного программирования предоставляют ме­ханизмы, облегчающие реализацию объектно-ориентированной модели. Этими механизмами являются инкапсуляция, наследование и полиморфизм. Рассмотрим эти принципы ООП в отдельности.

Инкапсуляция

Механизм, связывающий код и данные, которыми он манипулирует, защищая оба эти компонента от внешнего вмешательства и злоупотреблений, называется инкап­суляцией. Инкапсуляцию можно считать защитной оболочкой, которая предохраня­ет код и данные от произвольного доступа со стороны другого кода, находящегося снаружи оболочки. Доступ к коду и данным, находящимся внутри оболочки, строго контролируется тщательно определенным интерфейсом. Чтобы провести анало­гию с реальным миром, рассмотрим автоматическую коробку передач автомобиля. Она инкапсулирует немало сведений об автомобиле, в том числе величину ускоре­ния, крутизну поверхности, по которой совершается движение, а также положение рычага переключения скоростей. Пользователь (в данном случае водитель) может оказывать влияние на эту сложную инкапсуляцию только одним способом: переме­щая рычаг переключения скоростей. На коробку передач нельзя воздействовать, например, с помощью индикатора поворота или дворников. Таким образом, рычаг переключения скоростей является строго определенным, а по существу, единствен­ным, интерфейсом с коробкой передач. Более того, происходящее внутри коробки передач не влияет на объекты, находящиеся вне ее. Например, переключение пере­дач не включает фары! Функция автоматического переключения передач инкапсу­лирована, и поэтому десятки изготовителей автомобилей могут реализовать ее как угодно. Но с точки зрения водителя все эти коробки передач работают одинаково. Аналогичный принцип можно применять и в программировании. Сильная сторона инкапсулированного кода состоит в следующем: всем известно, как получить доступ к нему, а следовательно, его можно использовать независимо о подробностей реали­зации и не опасаясь неожиданных побочных эффектов.

Основу инкапсуляции ejavaсоставляет класс. Подробнее классы будут рассмотре­ны в последующих главах, а до тех пор полезно дать хотя бы краткое их описание. Класс определяет структуру и поведение (данные и код), которые будут совместно использоваться набором объектов. Каждый объект данного класса содержит струк­туру и поведение, которые определены классом, как если бы объект был “отлит” в форме класса. Поэтому иногда объекты называют экземплярами класса. Таким об­разом, класс - это логическая конструкция, а объект - ее физическое воплощение.

При создании класса определяются код и данные, которые образуют этот класс. Совместно эти элементы называются членами класса. В частности, определенные в классе данные называются перемени ымичленами, или переменными экземпляра, а код, оперирующий данными, - методами-членами, или просто методами. (То, что програм­мирующие на Java называют методами, программирующие на C/C++ называют функ­циями) В программах, правильно написанных на Java, методы определяют, каким об­разом используются переменные-члены. Это означает, что поведение и интерфейс класса определяются методами, оперирующими данными его экземпляра.

Поскольку назначение класса состоит в инкапсуляции сложной структуры про­граммы, существуют механизмы сокрытия сложной структуры реализации в самом классе. Каждый метод или переменная в классе могут быть помечены как закрытые или открытые. Открытый интерфейс класса представляет все, что должны или мо­гут знать внешние пользователи класса. Закрытые методы и данные могут быть до­ступны только для кода, который является членом данного класса. Следовательно, любой другой код, не являющийся членом данного класса, не может получать доступ к закрытому методу или переменной. Закрытые члены класса доступны другим ча­стям программы только через открытые методы класса, и благодаря этому исключа­ется возможность выполнения неправомерных действий. Это, конечно, означает, что открытый интерфейс должен быть тщательно спроектирован и не должен рас­крывать лишние подробности внутреннего механизма работы класса (рис 1).

Рис. 1.

Наследование

Процесс, в результате которого один объект получает свойства другого, назы­вается наследованием. Это очень важный принцип ООП, поскольку наследование обеспечивает принцип иерархической классификации. Как отмечалось ранее, большинство знаний становятся доступными для усвоения благодаря иерархиче­ской (т.е. нисходящей) классификации. Например, золотистый ретривер - часть классификации собак, которая, в свою очередь, относится к классу млекопитающих, а тот - к еще большему классу животных. Без иерархий каждый объект должен был бы явно определять все свои характеристики. Но благодаря наследованию объект должен определять только те из них, которые делают его особым в классе. Объект может наследовать общие атрибуты от своего родительского объекта. Таким об­разом, механизм наследования позволяет сделать один объект частным случаем более общего случая. Рассмотрим этот механизм подробнее.

Как правило, большинство людей воспринимают окружающий мир в виде ие­рархически связанных между собой объектов, подобных животным, млекопитаю­щим и собакам. Если требуется привести абстрактное описание животных, можно сказать, что они обладают определенными свойствами: размеры, уровень интел­лекта и костная система. Животным присущи также определенные особенности поведения: они едят, дышат и спят. Такое описание свойств и поведения составля­ет определение класса животных.

Если бы потребовалось описать более конкретный класс животных, например млекопитающих, следовало бы указать более конкретные свойства, в частности тип зубов и молочных желез. Такое определение называется подклассом животных, которые относятся к суперклассу (родительскому классу) млекопитающих. А поскольку млекопитающие - лишь более точно определенные животные, то они на­следуют все свойства животных. Подкласс нижнего уровня иерархии классов наследу­ет все свойства каждого из его родительских классов (рис. 2).

Рис. 2.

Наследование связано также с инкапсуляцией. Если отдельный класс инкапсули­рует определенные свойства, то любой его подкласс будет иметь те же самые свойства плюс любые дополнительные, определяющие его специализацию (рис. 3). Благодаря этому ключевому принципу сложность объектно-ориентированных программ нарастает в арифметической, а не геометрической прогрессии. Новый под­класс наследует атрибуты всех своих родительских классов и поэтому не содержит непредсказуемые взаимодействия с большей частью остального кода системы.

Рис. 3. Лабрадор полностью наследует инкапсулированные свойства всех родительских классов животных

Полиморфизм

Полиморфизм (от греч. “много форм”) - это принцип ООП, позволяющий ис­пользовать один и тот же интерфейс для общего класса действий. Каждое действие зависит от конкретной ситуации. Рассмотрим в качестве примера стек, действую­щий как список обратного магазинного типа. Допустим, в программе требуются стеки трех типов: для целочисленных значений, для числовых значений с плаваю­щей точкой и для символов. Алгоритм реализации каждого из этих стеков остается неизменным, несмотря на отличия в данных, которые в них хранятся. В языке, не являющемся объектно-ориентированным, для обращения со стеком пришлось бы создавать три разных ряда служебных программ под отдельными именами. A ejava, благодаря принципу полиморфизма, для обращения со стеком можно определить общий ряд служебных программ под одними и теми же общими именами.

В более общем смысле принцип полиморфизма нередко выражается фразой “один интерфейс, несколько методов”. Это означает, что можно разработать об­щий интерфейс для группы связанных вместе действий. Такой подход позволяет уменьшить сложность программы, поскольку один и тот же интерфейс служит для указания общего класса действий. А выбор конкретного действия (т.е. метода) де­лается применительно к каждой ситуации и входит в обязанности компилятора. Это избавляет программиста от необходимости делать такой выбор вручную. Ему нужно лишь помнить об общем интерфейсе и правильно применять его.

Если продолжить аналогию с собаками, то можно сказать, что собачье обоня­ние - полиморфное свойство. Если собака почувствует запах кошки, она залает и погонится за ней. А если собака почувствует запах своего корма, то у нее нач­нется слюноотделение, и она поспешит к своей миске. В обоих случаях действует одно и то же чувство обоняния. Отличие лишь в том, что именно издает запах, т.е. в типе данных, воздействующих на нос собаки! Этот общий принцип можно реализовать, применив его к методам в программе на Java.

Совместное применение полиморфизма, инкапсуляции и наследования

Если принципы полиморфизма, инкапсуляции и наследования применяются правильно, то они образуют совместно среду программирования, поддерживаю­щую разработку более устойчивых и масштабируемых программ, чем в том случае, когда применяется модель, ориентированная на процессы. Тщательно продуман­ная иерархия классов служит прочным основанием для многократного использо­вания кода, на разработку и проверку которого были затрачены время и усилия. Инкапсуляция позволяет возвращаться к ранее созданным реализациям, не нару­шая код, зависящий от открытого интерфейса применяемых в приложении клас­сов. А полиморфизм позволяет создавать понятный, практичный, удобочитаемый и устойчивый код.

Из двух приведенных ранее примеров из реальной жизни примере автомобиля­ми более полно иллюстрирует возможности ООП. Если пример с собаками вполне подходит для рассмотрения ООП с точки зрения наследования, то пример с авто­мобилями имеет больше общего с программами. Садясь за руль различных типов (подклассов) автомобилей, все водители пользуются наследованием. Независимо от того, является ли автомобиль школьным автобусом, легковым, спортивным автомобилем или семейным микроавтобусом, все водители смогут легко найти руль, тормоза, педаль акселератора и пользоваться ими. Немного повозившись с рычагом переключения передач, большинство людей могут даже оценить отличия руч­ной коробки передач от автоматической, поскольку они имеют ясное представление об общем родительском классе этих объектов - системе передач.

Пользуясь автомобилями, люди постоянно взаимодействуют с их инкапсули­рованными характеристиками. Педали тормоза и газа скрывают невероятную сложность соответствующих объектов за настолько простым интерфейсом, что для управления этими объектами достаточно нажать ступней педаль! Конкретная реализация двигателя, тип тормозов и размер шин не оказывают никакого влия­ния на порядок взаимодействия с определением класса педалей.

И наконец, полиморфизм ясно отражает способность изготовителей автомо­билей предлагать большое разнообразие вариантов, по сути, одного и того же средства передвижения. Так, на автомобиле могут быть установлены система тор­мозов с защитой от блокировки или традиционные тормоза, рулевая система с гидроусилителем или с реечной передачей и 4-, 6- или 8-цилиндровые двигатели. Но в любом случае придется нажать на педаль тормоза, чтобы остановиться, вращать руль, чтобы повернуть, и нажать на педаль акселератора, чтобы автомобиль дви­гался быстрее. Один и тот же интерфейс может быть использован для управления самыми разными реализациями.

Как видите, благодаря совместному применению принципов инкапсуляции, наследования и полиморфизма отдельные детали удается превратить в объект, называемый автомобилем. Это же относится и к компьютерным программам. Принципы ООП позволяют составить связную, надежную, сопровождаемую про­грамму из многих отдельных частей.

Как отмечалось в начале этого раздела, каждая программа на Java является объ­ектно-ориентированной. Точнее говоря, в каждой программе Hajava применяют­ся принципы инкапсуляции, наследования иполиморфизма. На первый взгляд может показаться, что не все эти принципы проявляются в коротких примерах программ, приведенных в остальной части этой главы и ряде последующих глав, тем не менее они в них присутствуют. Как станет ясно в дальнейшем, многие языковые средства Java являются составной частью встроенных библиотек классов, в которых широко применяются принципы инкапсуляции, наследования и полиморфизма.

Методология объектно-ориентированного программирования – подход, использующий объектную декомпозицию, при которой статическая структура системы описывается в терминах объектов и связей между ними, а поведение системы описывается в терминах обмена сообщениями между объектами.

В основе объектно-ориентированного языка программирования лежат понятия: объект, класс, инкапсуляция, наследование и полиморфизм.

В частном случае в VisualBasicобъектом называется элемент пользовательского интерфейса, который создается на формеVisualBasic, а также элементы управления и отображения.

Каждый объект есть представитель некоторого класса однотипных объектов, т.е. объект является экземпляром класса. Класс определяет общие для всех его объектов методы и свойства.Методы – это программные процедуры, определяющие взаимодействие объектов класса с внешней средой.Свойства представляют собой характеристики (атрибуты), присущие объектам (например, размер шрифта, название и др.).

Инкапсуляция – это скрытие информации. При объектно-ори­ентированном программировании возможен доступ к объекту только через его методы и свойства. Внутренняя структура объекта скрыта от пользователя, т.е. объекты – это самостоятельные сущности, отделенные от внешнего мира. Инкапсуляция позволяет изменять реализацию объектов любого класса без опасений, что это вызовет нежелательные побочные эффекты в программной системе. Это мощное средство обеспечивает многократное использование одного и того же программного кода.

Наследование – это возможность выделить свойства, методы и события одного объекта и приписать их другому объекту, иногда с их модификацией. С точки зрения программиста, новый класс должен содержать только коды и данные для новых или изменяющихся методов.

Полиморфизм – это способность объектов выбирать операцию на основе данных, принимаемых в сообщении. Каждый объект может реагировать по-своему на одно и то же сообщение. Например, командаPrint будет по-разному воспринята черно-белым или цветным принтером.

Базовые понятия объектно-ориентированного программирования

При использовании ООП основными действующими лицами являются не переменные, а объекты .

Объектам VisualBasicприсуща функциональность. Иными словами, они действуют определенным образом и могут откликаться на определенные ситуации. При этом если свойства объекта определяют его внешний вид и поведение, то методы объекта – те задачи, которые может выполнить данный объект. Методы по сути дела представляют собой сегмент программного кода, внедрен­ный в объект.

Существует определенный формат программного кода, задающего установку свойства и использование метода:

Объект.Свойство = Значение

Объект.Метод [Параметр1 [...]]

Здесь Объект – имя настраиваемого объекта;Свойство – характеристика, которую нужно изменить;Метод – команда, которая используется для изменения объекта;Значение – новая установка свойства;Параметр – аргумент, используемый методом.

Пусть необходимо написать программу, которая будет рисовать на экране снеговика, состоящего и кругов какого-либо определенного цвета. Необходимо предусмотреть возможность перемещения снеговика по экрану в различных направлениях – процедура Move. Сделать возможным изменение цвета для всех кругов, из которых состоит снеговик.

Все крути можно представить в виде самостоятельных объектов с одинаковой структурой, которые отличаются друг от друга лишь значениями параметров. Действие процедур Draw(рисование круга),Move(перемещение круга) и ChangeColor (смена цвета круга), идентичны применительно к каждому из кругов. Все круги являются объектами, которые имеют одинаковую структуру (радиус, координаты центра, цвет) и ведут себя схожим образом при выполнении любого действия (рисование, перемещение, изменение цвета), т.е. все они принадлежат одному и тому же семейству.

С точки зрения объектно-ориентированного программирования все "действующие лица" программы представляют собой объекты, каждый из которых является элементом (экземпляром) какого-либокласса. Параметры объекта (радиус, цвет и т. п.) называются егосвойствами, а процедуры или функции, которые он выполняет в ответ на какой-либо запрос (поменять цвет, переместиться и т. п.), называются методами. При этом метод, который должен вызываться в ответ на запрос, определяется классом, экземпляром которого является данный объект. И наоборот, если объекты принадлежат одному и тому же классу, то они должны вызывать одинаковые методы в ответ на один и тот же запрос.

Представление свойств и методов как неотъемлемых частей любого объекта носит название инкапсуляции , т.е. в этом случае объект можно представить как своеобразную оболочку (капсулу), которая "окружает" программный код (методы) и данные (свойства). На рис. 1 приведена иллюстрация этого важного понятия ООП.

Свойства

Рис.1. Иллюстрация понятия инкапсуляции

Пусть класс, которому принадлежат все объекты-круги, называется Round.

Свойствами класса Roundявляются следующие:

R – радиус круга;

X ,Y – координаты центра круга;

Color – цвет круга.

Методы класса Round:

– Draw– рисует круг с заданными параметрами;

– Move– перемещает круг на определенное расстояние в выбранном направлении;

– ChangeColor– изменяет цвет крута.

Для того чтобы нарисовать снеговика, потребуются три объекта-круга. Верхний из них можно назвать Head, средний –Body,aнижний –Foot. Все эти объекты принадлежат классуRound. Следовательно, все они имеют одинаковые свойства (R ,X ,Y ,Color ) и вызывают одинаковые методы (Draw,Move,ChangeColor) в ответ на одни и те же запросы.

Таким образом, в ООП принципы абстрагирования и сокрытия данных нашли свое максимальное отражение. Программа состоит из независимых блоков, которые могут использоваться и в других приложениях. ООП зачастую позволяет создавать конечный продукт просто путем соединения нескольких готовых блоков, написанных ранее.

Из своего опыта могу сказать, что всегда считал что понимал ООП, что же тут такого то - полиморфизм, инкапсуляция и наследование, но вот когда дошло до дела, то туговато пришлось. Хочу разложить всё по полочкам чтобы никто не наступил на мои грабли в будущем:)

Шаг 1.

Немного теории:

Объектно-ориентированное программирование (в дальнейшем ООП) - парадигма программирования, в которой основными концепциями являются понятия объектов и классов.

В центре ООП находится понятие объекта.

Объект - это сущность, экземпляр класса, которой можно посылать сообщения и которая может на них реагировать, используя свои данные. Данные объекта скрыты от остальной программы. Сокрытие данных называется инкапсуляцией.

Наличие инкапсуляции достаточно для объектности языка программирования, но ещё не означает его объектной ориентированности - для этого требуется наличие наследования.

Но даже наличие инкапсуляции и наследования не делает язык программирования в полной мере объектным с точки зрения ООП. Основные преимущества ООП проявляются только в том случае, когда в языке программирования реализован полиморфизм, то есть возможность объектов с одинаковой спецификацией иметь различную реализацию.

Хочу выделить что очень часто натыкаюсь на мнение, что в ООП стоит выделять еще одну немаловажную характеристику - абстракцию. Официально её не вносили в обязательные черты ООП, но списывать ее со счетов не стоит.

Абстрагирование - это способ выделить набор значимых характеристик объекта, исключая из рассмотрения не значимые Соответственно, абстракция - это набор всех таких характеристик.

Инкапсуляция - это свойство системы, позволяющее объединить данные и методы, работающие с ними в классе, и скрыть детали реализации от пользователя.

Наследование - это свойство системы, позволяющее описать новый класс на основе уже существующего с частично или полностью заимствующейся функциональностью. Класс, от которого производится наследование, называется базовым, родительским или суперклассом. Новый класс - потомком, наследником или производным классом

Полиморфизм - это свойство системы использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта.

Шаг 2.

Инкапсуляция.

Инкапсуляция позволит скрыть детали реализации, и открыть только то что необходимо в последующем использовании. Другими словами инкапсуляция – это механизм контроля доступа.

Зачем же это нужно?

Думаю, вам бы не хотелось, чтобы кто-то, что-то изменял в написанной вами библиотеки.

И если это опытный программист, то это простить еще можно, но все равно не приятно, а вот если это начинающий или не осторожный который с легкой руки задумает изменить код, да ещё не в ту степь, нам ведь такого не хочется! Чтобы обезопасить себя от таких поступков, существует инкапсуляция.

Цель инкапсуляции – уйти от зависимости внешнего интерфейса класса (то, что могут использовать другие классы) от реализации. Чтобы малейшее изменение в классе не влекло за собой изменение внешнего поведения класса. Давайте рассмотрим, как ею пользоваться.

Существует 4 вида модификаторов доступа: public , protected , private и default .

Public – уровень предполагает доступ к компоненту с этим модификатором из экземпляра любого класса и любого пакета.

Protected – уровень предполагает доступ к компоненту с этим модификатором из экземпляров родного класса и классов-потомков, независимо от того, в каком пакете они находятся.

Default – уровень предполагает доступ к компоненту с этим модификатором из экземпляров любых классов, находящихся в одном пакете с этим классом.

Private – уровень предполагает доступ к компоненту с этим модификатором только из этого класса.

Public class Human { public String name; protected String surname; private int age; int birthdayYear; }

public String name; - имя, которое доступное из любого места в приложении.
protected String surname; - фамилия доступна из родного класса и потомков.
private int age; - возраст доступен только в рамках класса Human.
int birthdayYear; - хоть не указывается явный модификатор доступа, система понимает его как default, год рождения будет доступен всему пакету, в котором находится класс Human.

Для разных структурных элементов класса предусмотрена возможность применять только определенные уровни модификаторов доступа.

Для класса - только public и default.

Для атрибутов класса - все 4 вида.

Для конструкторов - все 4 вида.

Для методов - все 4 вида.

Шаг 3.

Наслед ование.

Наследование - это процесс, посредством которого один объект может приобретать свойства другого. Точнее, объект может наследовать основные свойства другого объекта и добавлять к ним черты, характерные только для него.

Наследование является важным, поскольку оно позволяет поддерживать концепцию иерархии классов (hierarchical classification). Применение иерархии классов делает управляемыми большие потоки информации.

Разберем этот механизм на классическом примере: Геометрические фигуры.

У нас есть интерфейс Figure:

Public interface Figure { public void draw (); public void erase (); public void move (); public String getColor (); public boolean setColor (); }

Интерфейс (более детально будут рассмотрены в скором будущем ) - нам говорит, как должен выглядеть класс, какие методы в себе содержать, какими переменными и типами данных манипулировать. Сам интерфейс не реализует методы, а создает как бы скелет для класса, который будет расширять этот интерфейс. Есть класс Figure, который расширяет интерфейс Figure:

Public class Figure implements сайт.oop.inheritance.interfaces.Figure{ @Override public void draw() { //need to implement } @Override public void erase() { //need to implement } @Override public void move(int pixel) { //need to implement } @Override public String getColor() { return null; } @Override public boolean setColor(String colour) { return false; } }

В этом классе мы реализуем все методы интерфейса Figure .

public class Figure implements сайт.oop.inheritance.interfaces.Figure - с помощью ключевого слова implements мы перенимаем методы интерфейса Figure для реализации.

Важно: в классе должны быть все методы интерфейса, даже если некоторые еще не реализованы, в противном случае компилятор будет выдавать ошибку и просить подключить все методы. Тело методов можно изменить только в интерфейсе, здесь только реализация.
@ Override - аннотация которая говорит что метод переопределен.

И соответственно у нас есть 3 класса самих фигур, которые наследуются от класса Figure. Класс Figure является родительским классом или классом-родителем, а классы Circle, Rectungle и Triangle - являются дочерними.

Public class Circle extends Figure { @Override public void draw() { super.draw(); } @Override public void erase() { super.erase(); } @Override public void move(int pixel) { super.move(pixel); } @Override public String getColor() { return super.getColor(); } @Override public boolean setColor(String colour) { return super..oop.inheritance.Figure{ @Override public void draw() { super.draw(); } @Override public void erase() { super.erase(); } @Override public void move(int pixel) { super.move(pixel); } @Override public String getColor() { return super.getColor(); } @Override public boolean setColor(String colour) { return super..oop.inheritance.Figure{ @Override public void draw() { super.draw(); } @Override public void erase() { super.erase(); } @Override public void move(int pixel) { super.move(pixel); } @Override public String getColor() { return super.getColor(); } @Override public boolean setColor(String colour) { return super.setColor(colour); } }

public class Triangle extends сайт.oop.inheritance.Figure - это значит, что класс Triangle наследует класс Figure .

super.setColor(colour); - super модификатор, позволяющий вызывать методы из класса родителя.

Теперь каждый класс перенял свойства класса Figure. Что собственно это нам дало?

Значительно уменьшило время разработки классов самих фигур, дало доступ к полям и методам родительского класса.

Наверное возник вопрос: чем же extends отличается от implements ?

Extends дает нам намного гибче подход. Мы используем только те методы, что нам нужны, в любой момент мы можем изменить каркас и тело метода, или добавить совсем новый метод, который возможно будет использовать информацию от класса родителя, а implements все лишь формирует тело класса.

В дочерних классах мы можем спокойно добавлять новые интересующие нас методы. Например, мы хотим добавить в класс Triangle 2-а новых метода: flimHorizontal () и flipVertical ():

/** * New Method */ public void flipVertical () { }; /** * New Method */ public void flipHorizontal () { };

Теперь эти 2-а метода принадлежат сугубо классу Triangle . Этот подход используется когда базовый класс не может решить всех проблем.

Или можно использовать другой подход, изменить или переписать методы в дочерним классе:

Довольно интересный факт: в java запрещено множественное наследование, но любой из классов по умолчанию наследуется то класса Object . То есть при наследовании любого класса у нас получается множественное наследование)

Но не стоит забивать этим голову!

Шаг 4.

Полиморфизм.

В более общем смысле, концепцией полиморфизма является идея “один интерфейс, множество методов “.

Это означает, что можно создать общий интерфейс для группы близких по смыслу действий. Преимуществом полиморфизма является то, что он помогает снижать сложность программ, разрешая использование того же интерфейса для задания единого класса действий. Выбор же конкретного действия, в зависимости от ситуации, возлагается на компилятор.

Вам, как программисту, не нужно делать этот выбор самому. Нужно только помнить и использовать общий интерфейс.

Public class Parent { int a = 2; } public class Child extends Parent { int a = 3; }

Прежде всего, нужно сказать, что такое объявление корректно.

Наследники могут объявлять поля с любыми именами, даже совпадающими с родительскими. Объекты класса Child будут содержать сразу две переменных, а поскольку они могут отличаться не только значением, но и типом (ведь это два независимых поля), именно компилятор будет определять, какое из значений использовать.

Компилятор может опираться только на тип ссылки, с помощью которой происходит обращение к полю:

Child c = new Child(); System.out.println(c.a); // результатом будет 3 Parent p = c; System.out.println(p.a); //результатом будет 2

Данное объявление так и называется – «скрывающим ». Родительское поле продолжает существовать.

К нему можно обратиться явно:

Class Child extends Parent { int a = 3; //скрывающее объявление int b = ((Parent)this).a; //громоздкое обращение к родительскому полю int c = super.a; //простое обращение к родительскому полю }

Переменные b и c получат значения, родительского поля a . Хотя выражение с super более простое, оно не позволит обратиться на два уровня вверх по дереву наследования.

А ведь вполне возможно, что в родительском классе это поле также было скрывающим и в родителе родителя храниться ещё одно значение.

К нему можно обратиться явным приведением, как это делается для b .

Class Parent { int x = 0; public void printX() { System.out.println(x); } } class Child extends Parent { int x = -1; }

Каков будет результат для new Child.printX() ; ?

Метод вызывается с помощью ссылки типа Child , но метод определен в классеParent и компилятор расценивает обращение к полю x в этом методе именно как к полю класса Parent . Результатом будет 0 .

Рассмотрим случай переопределения методов:

Class Parent { public int getValue() { return 0; } } class Child extends Parent { public int getValue() { return 1; } } Child c = new Child(); System.out.println(c.getValue()); // результатом будет 1 Parent p = c; System.out.println(p.getValue()); // результатом будет 1

Родительский метод полностью перекрыт.

В этом ключевая особенность полиморфизма – наследники могут изменить родительское поведение, даже если обращение к ним производиться по ссылке родительского типа.

Хотя старый метод снаружи недоступен, внутри класса-наследника к нему можно обратиться с помощью super .

Статические методы, подобно статическим полям принадлежат классу и появление наследников на них не сказывается. Статические методы не могут перекрывать обычные методы и наоборот.

Шаг 5.

Абстракция:

Как говорилось в начале статьи, нельзя игнорировать абстракцию, а значит и абстрактные классы и методы.

В контексте ООП абстракция - это обобщение данных и поведения для типа, находящегося выше текущего класса по иерархии.

Перемещая переменные или методы из подкласса в супер класс, вы обобщаете их. Это общие понятия, и они применимы в языке Java. Но язык добавляет также понятия абстрактных классов и абстрактных методов .

Абстрактный класс является классом, для которого нельзя создать экземпляр.

Например, вы можете создать класс Animal (животное). Нет смысла создавать экземпляр этого класса: на практике вам нужно будет создавать экземпляры конкретных классов , например, Dog (собака). Но все классы Animal имеют некоторые общие вещи, например, способность издавать звуки. То, что Animal может издавать звуки, еще ни о чем не говорит.

Издаваемый звук зависит от вида животного.

Как это смоделировать?

Определить общее поведение в абстрактном классе и заставить подклассы реализовывать конкретное поведение, зависящее от их типа.

В иерархии могут одновременно находиться как абстрактные, так и конкретные классы.

Использование абстракции:

Наш класс Person содержит некоторый метод поведения, и мы пока не знаем, что он нам необходим. Удалим его и заставим подклассы реализовывать это поведение полиморфным способом. Мы можем сделать это, определив методы Person как абстрактные. Тогда наши подклассы должны будут реализовывать эти методы.

Public abstract class Person { abstract void move(); abstract void talk(); } public class Adult extends Person { public Adult() { } public void move() { System.out.println("Walked."); } public void talk() { System.out.println("Spoke."); } } public class Baby extends Person { public Baby() { } public void move() { System.out.println("Crawled."); } public void talk() { System.out.println("Gurgled."); } }

Что мы сделали в приведенном выше коде?

Мы изменили Person и указали методы как abstract , заставив подклассы реализовывать их.
Мы сделали Adult подклассом Person и реализовали эти методы.
Мы сделали Baby подклассом Person и реализовали эти методы.

Объявляя метод абстрактным, вы требуете от подклассов либо реализации этого метода, либо указания метода в этих подклассах абстрактным и передачи ответственности по реализации метода к следующим подклассам. Можно реализовать некоторые методы в абстрактном классе и заставить подклассы реализовывать остальные. Это зависит от вас. Просто объявите методы, которые не хотите реализовывать, как абстрактные и не предоставляйте тело метода. Если подкласс не реализует абстрактный метод супер класса, компилятор выдаст ошибку.

Теперь, поскольку Adult и Baby являются подклассами Person , мы можем обратиться к экземпляру каждого класса как к типу Person.

по существу пользовались парадигмой директивного программирования - целью было создание кода, воздействующего должным образом на данные. Этот подход хорош при решении небольших задач, но порождает множество трудноразрешимых проблем при попытке создания больших программных систем .

Одной из альтернатив директивному программированию является объектно-ориентированное программирование , которое действительно помогает справиться с нелинейно растущей сложностью программ при увеличении их объема. Не следует, однако, делать вывод , что использование парадигмы объектно-ориентированного программирования гарантирует успешное решение всех проблем.

Для того чтобы стать профессионалом в программировании, необходимы талант, способность к творчеству, интеллект , знания, логика, умение строить и использовать абстракции и, самое главное, опыт .

В этом параграфе мы продолжим знакомство с базисными концепциями объектно-ориентированного программирования, начатое еще в первой главе книги. Сначала будут обсуждены общие для различных языков программирования понятия ООП , а затем - их реализация в языке Java .

Следует знать, что курс объектно-ориентированного программирования читается студентам-старшекурсникам в течение целого семестра, и поэтому материал, изложенный ниже, представляет собой лишь самое начальное введение в мир ООП . Значительно более полное изложение многих вопросов, связанных с объектно-ориентированными дизайном, проектированием и программированием, содержится в книге , а в третьей главе книги можно найти очень ясное описание всех объектно-ориентированных аспектов языка Java .

Основные концепции ООП

Объектно-ориентированное программирование или ООП (object-oriented programming) - методология программирования , основанная на представлении программы в виде совокупности объектов , каждый из которых является реализацией определенного типа , использующая механизм пересылки сообщений и классы , организованные в иерархию наследования .

Центральный элемент ООП - абстракция . Данные с помощью абстракции преобразуются в объекты, а последовательность обработки этих данных превращается в набор сообщений, передаваемых между этими объектами. Каждый из объектов имеет свое собственное уникальное поведение. С объектами можно обращаться как с конкретными сущностями, которые реагируют на сообщения, приказывающие им выполнить какие-то действия.

ООП характеризуется следующими принципами ( по Алану Кею):

  • все является объектом ;
  • вычисления осуществляются путем взаимодействия (обмена данными) между объектами, при котором один объект требует, чтобы другой объект выполнил некоторое действие; объекты взаимодействуют, посылая и получая сообщения ; сообщение - это запрос на выполнение действия, дополненный набором аргументов, которые могут понадобиться при выполнении действия;
  • каждый объект имеет независимую память , которая состоит из других объектов ;
  • каждый объект является представителем класса , который выражает общие свойства объектов данного типа ;
  • в классе задается функциональность (поведение объекта); тем самым все объекты, которые являются экземплярами одного класса, могут выполнять одни и те же действия;
  • классы организованы в единую древовидную структуру с общим корнем, называемую иерархией наследования ; память и поведение, связанное с экземплярами определенного класса, автоматически доступны любому классу, расположенному ниже в иерархическом дереве.

Определение 10.1 . Абстрагирование (abstraction) - метод решения задачи, при котором объекты разного рода объединяются общим понятием (концепцией), а затем сгруппированные сущности рассматриваются как элементы единой категории.

Абстрагирование позволяет отделить логический смысл фрагмента программы от проблемы его реализации, разделив внешнее описание ( интерфейс ) объекта и его внутреннюю организацию (реализацию).

Определение 10.2 . Инкапсуляция (encapsulation) - техника, при которой несущественная с точки зрения интерфейса объекта информация прячется внутри него.

Определение 10.3 . Наследование (inheritance) - свойство объектов, посредством которого экземпляры класса получают доступ к данным и методам классов-предков без их повторного определения.

Наследование позволяет различным типам данных совместно использовать один и тот же код, приводя к уменьшению его размера и повышению функциональности.

Определение 10.4 .