Схема работы вентиляторов в компьютере. “Анатомия” компьютерных вентиляторов. Что в компьютере греется, и как оно охлаждается

Кулер для процессора или CPU cooler относится к числу компонентов персонального компьютера, на которые значительная часть пользователей не обращает особого внимания. Более того, вполне возможно, что многие пользователи, наверное, и не знают о существовании подобного компонента. Между тем, процессорный кулер вряд ли заслуживает столь пренебрежительного отношения, поскольку его функция в системном блоке достаточно важна. Можно сказать, что без этого вспомогательного устройства невозможно функционирование сердца компьютера – центрального процессора.

Не секрет, что одной из основных особенностей работы центрального процессора является значительное выделение им тепла. Такое свойство процессора вполне естественно, ведь ему приходится трудиться «в поте лица», обрабатывая в долю секунды огромное количество данных и выполняя одновременно миллиарды операций. Как следствие, через кристалл процессора протекает значительный электрический ток, вызывающий его большой тепловой нагрев.

Следовательно, если процессор специально не охлаждать, то его температура его будет постоянно расти. Однако процессор не может нагреваться выше определенной величины, поскольку это может привести к выходу его из строя. Кроме того, постоянное воздействие высокой температуры может отрицательно сказаться на работоспособности и долговечности процессора.

Поэтому для охлаждения процессора и удержания его температуры в безопасных пределах применяются устройства охлаждения. Устройства охлаждения обычно делятся на пассивные и активные. Пассивные охладители отводят тепло от источника и рассеивают его в пространстве. Примером пассивного охладителя является радиатор. Однако недостаток охлаждающих устройств подобного типа состоит в том, что они не используют приток холодной среды в зону выделения тепла. Последний способ применяется в активных охлаждающих устройствах.

Радиаторы - как пример пассивного охлаждения процессора.

Примером подобного устройства является вентилятор для процессора, или, как также часто его называют, кулер. А если взять отдельно сам вентилятор, то его можно отнести к числу наиболее распространенных охлаждающих устройств в компьютере. Сфера его применения включает не только охлаждение центрального процессора, но и охлаждение других интенсивно выделяющих тепло компонентов, таких, как блок питания, графическая карта, винчестер, чипсет материнской платы и т.д. Основные достоинства вентилятора – простота конструкции, невысокая стоимость и достаточно высокая надежность.

Как правило, большинство процессоров оснащается их производителями штатными кулерами. Однако подобные охлаждающие устройства имеют довольно средние характеристики, и поэтому в некоторых случаях для того, чтобы обеспечить достаточное охлаждение центрального процессора, пользователю может потребоваться более эффективный процессорный кулер, чем штатный.

Принцип работы

Название «кулер» происходит от английского слова «cooler» – охладитель. Между тем, далеко не всякое охлаждающее устройство можно отнести к разряду кулеров. Обычно кулером в компьютерной терминологии называют охлаждающее устройство, главным компонентом которого является вентилятор. Часто кулером называют сам по себе охлаждающий вентилятор, хотя, строго говоря, кулером на самом деле является комбинация вентилятора и радиатора. Таким образом, кулер использует как активный, так и пассивный методы охлаждения.

Радиаторы представляют собой устройства, сделанные из металла, обладающего высокой тепловодностью, например, алюминия. Существуют также кулеры из меди, обладающей еще более высокой тепловодностью, чем алюминий, однако медные радиаторы дороже и встречаются реже. Одной из основных особенностей радиатора является его сложный профиль. Как правило, радиатор состоит множества металлических пластин, расположенных параллельно или под углом друг другу. Благодаря этому радиатор имеет большую площадь поверхности, что также способствует интенсивному рассеиванию тепла. Кроме того, в радиаторе обычно можно выделить две части – основание, которое непосредственно соприкасается с процессором и основную охлаждающую секцию.

Также существуют кулеры, которые используют для отвода тепла не только радиатор, но и специальные алюминиевые или медные трубки, в которых находится некоторое количество охлаждающей жидкости. Принцип работы трубок состоит в том, что жидкость, имеющая низкую температуру кипения, испаряется в области интенсивного поступления тепла, забирая при этом большое количество энергии, а затем отдает тепло, конденсируясь в холодной области кулера, обдуваемой вентилятором. Данная конструкция охлаждающего устройства пришла в компьютерный обиход из области промышленных охлаждающих систем. Хотя еще не так давно кулеры, использующие тепловые трубки, казались экзотическими устройствами, но в настоящий момент они занимают значительную часть рынка. Существует два основных типа кулеров с охлаждающими трубками – кулеры, в которых трубки граничат непосредственно с поверхностью процессора, и кулеры, в которых трубки впаяны в радиатор, но не касаются поверхности процессора непосредственно.

Пример дизайна радиатора с тепловыми трубками приведен ниже:

Кулер с охлаждающими трубками соприкасающимися с поверхностью CPU (слева) и впаянными в радиатор без соприкосновения с процессором (справа)

Несмотря на большое значение радиатора, вентилятор является не менее важным составным элементом кулера для процессора. Он предназначен для создания мощного воздушного потока, благодаря которому осуществляется отвод теплого, прошедшего через радиатор, воздуха во внутреннее пространство системного блока. Обычно тепловой поток, создаваемый вентилятором, имеет направление, совпадающее с осью его вращения, но существуют и вентиляторы, создающие радиальный, то есть, перпендикулярный оси вращения поток. Подобные вентиляторы называются бловерами. На сегодняшний день также нередко можно встретить кулер, имеющий не один, а сразу несколько вентиляторов.

Вентилятор процессорного кулера:

Бловер и кулер создающий радиальный поток воздуха охлаждающий процессор

Подключение кулера

Для подключения кулера к материнской плате используется расположенный на ней специальный разъем. Через этот разъем поступает питание, вращающее вентилятор. Кроме того, разъем может иметь одну или две вспомогательные линии данных. Разъем для кулера, в зависимости от типа материнской платы, может иметь 2, 3 или 4 контакта.

Кратко остановимся на особенностях, которыми обладает каждый разъем. Двухконтактный разъем поддерживает лишь линии питания, которым соответствуют черный и красный провод в кабеле вентилятора. Трехконтактный разъем означает, что присутствует еще одна дополнительной линия управления, предназначенная для контроля скорости вращения кулера. Четырехконтактный разъем поддерживает еще одну линию – линию управления скоростью вращения вентилятора методом PWM. Как правило, современные материнские платы имеют именно четырехконтактный разъем, хотя в него можно включать и вентиляторы, имеющие кабели с меньшим количеством проводов.

Устанавливается кулер, точнее говоря, радиатор кулера на верхнюю крышку процессора. Обычно между радиатором и процессором пролегает слой специальной проводящей пасты – так называемой термопасты. Предназначение термопасты – обеспечить плотное прилегание основания радиатора к поверхности процессора и предотвратить появление воздушных полостей между этими устройствами. Сверху, а иногда и сбоку от радиатора устанавливается вентилятор. Для крепления кулера к материнской плате используются специальные защелки и зажимы, а во многих случаях – винты.

Основные параметры кулера

Главным требованием, которое предъявляется к кулеру, является его способность осуществлять эффективное охлаждение центрального процессора. Как правило, для определения эффективности работы кулера используют такой параметр, как тепловое или термическое сопротивление. Этот параметр определяет количество градусов, на которое повысится температура процессора, при выделении им ватта тепловой энергии. Из этого можно понять, что чем ниже термическое сопротивление кулера, тем лучшую охлаждающую способность он имеет, и, как следствие, тем ниже будет температура кристалла процессора, на который он установлен. Стоит правда, иметь в виду, что кулер, имеющий высокое термическое сопротивление, не обязательно является низкокачественным, он просто может быть рассчитан на процессор с относительно низким тепловыделением.

Однако термическое сопротивление не является единственным критерием, характеризующим эффективность и качество кулера. Также хороший кулер должен по возможности обладать следующими свойствами:

  • Совместимость c большим количеством типов процессоров.
  • Наличие надежного и легко снимающегося крепления к процессору.
  • Высокая износостойкость и долговечность.
  • Низкий уровень вибрации и шума.
  • Небольшие габариты и малый вес.

Также при выборе кулера следует обратить внимание на то, поддерживает ли он регулировку скорости вращения в зависимости от нагрузки процессора. Эта возможность позволяет значительно снизить уровень шума, производимого вентилятором кулера. На данный момент большинство кулерных вентиляторов оснащено подобной функцией.

Настройка параметров кулера в BIOS

Практически в любой современной БИОС существуют опции, связанные с различными параметрами работы вентиляторов. Это могут быть как чисто информационные опции, подобные опции , которая показывает скорость вращения вентилятора, так и опции позволяющие регулировать параметры кулера, в частности, скорость его вращения. Существуют опции, например, которые позволяют задать скорость кулера косвенным путем, при помощи привязки ее к определенной температуре центрального процессора.

Во многих БИОС можно найти также опции типа CPU Smart FAN Mode, которые позволяют выбрать тип управления вращения вентилятором – при помощи изменения напряжения или посредством прямого регулирования скорости.

Заключение

CPU cooler – это одно из важнейших вспомогательных устройств компьютера, без которого была бы невозможна его нормальная работа. Как правило, кулер представляет собой комбинацию мощного охлаждающего вентилятора, который можно подключить к любой материнской плате через специальный разъем, и радиатора, изготовленного из металла с высокой тепловодностью – меди или алюминия. Главное назначение кулера – охлаждение центрального процессора и обеспечение нормального температурного режима его функционирования. Поэтому качеством, надежностью и эффективностью кулера ни в коем случае не стоит пренебрегать.

Вместо предисловияЗанимаясь как-то компьютером на базе Р166ММХ, среди прочего я обнаружил неработающий вентилятор блока питания. Из слов хозяина выяснилось, что вентилятор как-то с год назад застучал – чему были подтверждением физические повреждения лопастей и внутренней поверхности корпуса, стук прекратился почти сразу же – вместе с жизнью самого вентилятора, сам хозяин сразу же про это забыл. Запаса мощности обычного 200-ваттного блока питания вполне хватало, чтобы обеспечить работоспособность системного блока, не выходя из рабочего температурного режима. Техника с тех пор не стояла на месте, процессорные частоты выросли на порядок, увеличилась общая потребляемая мощность системных блоков, и только паспортные мощности блоков питания существенно не выросли, а значит температурные режимы работы ключевых элементов достаточно тяжёлые, и неисправность вентилятора блока питания может привести к непоправимым последствиям. Стимулом к разработке описываемого ниже устройства явилась установка в стандартный блок питания второго вентилятора, работающего на вдув из системного блока и работа обоих вентиляторов при напряжении питания в 9В. Если работу штатного блока питания можно проверить, подставив ладонь под выдуваемый поток воздуха, то работу второго проверить достаточно сложно даже визуально. Из этого исходило главное "техническое задание" - обеспечить визуальный контроль режима работы вентилятора. Стоимостные характеристики с самого начала не выдвигались на первый план, но в итоге оказалось, что стоимость готового устройства не превышает стоимости самого вентилятора. Занимаемый объём готового устройства, которое помимо сигнализации режима работы вентилятора в окончательном виде выполняет ещё ряд функций – обеспечивает двигатель вентилятора пониженным напряжением питания с фильтрацией импульсных помех от него и плавным запуском при включении, не превышает объёма спичечного коробка.

При минимальной доработке схемы устройство может обеспечивать авторегулировку частоты вращения от температуры.

Внутри вентилятора

Электрические схемы всех вентиляторов приблизительно одинаковы, с двумя их вариантами можно познакомиться на приведённых ниже схемах из журнала "Радио":


В этой же статье ("Ремонт вентиляторов электронных устройств" Р.Александрова) можно ознакомиться и с принципом их работы.

Реальные схемы вентиляторов могут отличаться лишь типом применяемых элементов и степенью их интеграции. В большинстве своём "двухпроводные" вентиляторы выполнены аналогично первой схеме. "Трёхпроводные" вентиляторы имеют в своей схеме дополнительный маломощный транзистор, включённый по схеме "с открытым (неподключённым) коллектором" - типовые схемы включения таких вентиляторов можно найти, например, в "даташите" на микросхему мониторинга системной платы W83781D.


Вот так выглядит плата одного из таких такого вентиляторов (вид с обеих сторон):


В схеме этого вентилятора датчик Холла интегрирован с ключевыми транзисторами, сигнал для датчика частоты вращения снимается с маломощного транзистора из серии ZGA.


Типовую схему включения и будем иметь в виду при разработке датчика вращения двигателя вентилятора. Вот его схема:


При работающем вентиляторе будут светиться оба светодиода, подборкой сопротивления резистора R4 добиваются их одинаковой яркости свечения, при этом при остановке двигателя должно быть заметно изменение яркости свечения. В случае остановки двигателя будет гореть только один из них. При движении с прерываниями будет заметно моргание светодиодов. При подключении в разрыв между R2 и базой транзистора конденсатора ёмкостью около 50мкФ при изменении частоты вращения будет изменяться и яркость свечения светодиодов. При использовании ещё нескольких радиоэлементов можно обеспечить аварийное отключение системного блока при выходе вентилятора из рабочего режима или задействование запасного.

В качестве схемы датчика вращения "двухпроводного" вентилятора можно было взять такую (впрочем, эта схема годилась и для "трёхпроводного" вентилятора).


При этом яркость свечения светодиода обратно зависела бы от тока потребления вентилятора – максимальное свечение при обрыве по цепи питания вентилятора, отсутствие свечения при коротком замыкании. Настройка подобного устройства сводилась бы к подбору сопротивлений двух резисторов – подбором R1 (~ 5 Ом) устанавливаем падение напряжения на нём при номинальном токе потребления вентилятора в районе 0.5-0.75В, подбором R2 добиваемся ощутимого изменения яркости свечения светодиода при остановке двигателя. Схема имеет "право на жизнь", но мы пойдём другим путём – превратим "двухпроводной" вентилятор в "трёхпроводной", ничего не меняя в его схеме. Сделать это достаточно легко. Для снятия сигнала, частота которого пропорциональна частоте вращения крыльчатки вентилятора, подходит коллектор любого из ключевых транзисторов. При этом датчиком вращения может быть первая схема с удалённым из неё резистором R1 без изменения параметров остальных элементов схемы. Остаётся только снять крыльчатку для доступа к элементам схемы, найти коллектор одного из транзисторов, припаять и зафиксировать провод и снова собрать. Заодно, если вентилятор уже побывал в работе, провести регламентные работы по удалению пыли и смазке вала.


Необходимый вывод транзистора найдём прозвонкой выводов относительно плюсового провода питания схемы на наличие низкоомной цепи сопротивлением в ~60 Ом и припаяем к нему провод.


На этом доработку двухпроводных вентиляторов можно считать законченной. Если не забыть, как его собрать.

Борьба с шумом

Редкий пользователь, установив вентилятор в корпус, не начинает борьбу с шумом. Причём, как правило, это заключается в подсоединении питания двигателя между проводами +12В и +5В. Как правило, любые доводы противников такого подключения не принимаются в расчет его сторонниками. Я тоже решил "вложить свою копейку" в этот спор. Для этого я немного изменил входные цепи старой звуковой карты Genius SM32х и использовал её в качестве осциллографа для снятий пульсаций по обеим шинам питания +12В и +5В одновременно с помощью звукового редактора Sony Sound Forge 7.0.
Первая "осциллограмма" относится к случаю подключения вентилятора к шинам +12В и 0.


Верхняя осциллограмма относится к шине +12В, нижняя – к +5В.

А вот что представляет собой осциллограмма при подключении вентилятора к шинам +12В и +5В.


Если шина +12В спокойно перенесла такое подключение, то обратите внимание на появившиеся импульсы по шине +5В в положительных значениях. Эти импульсы есть ни что иное, как коммутационные помехи ключевых транзисторов схемы управления двигателем и импульсные помехи его катушек. Помехи эти достаточно сильные – при измерении пикового значения с помощью осциллографа С1-55 для коммутационных помех данного вентилятора было получено значение более 0.2В – при использовании процессорного кулера для охлаждения интегрированного 4-х канального усилителя мощности ЗЧ суммарной мощностью в 120Вт с питанием через интегральный стабилизатор КР142ЕН8 фон удалось убрать только при подключении конденсатора ёмкостью не менее 1000мкФ. Именно это значение ёмкости является рекомендуемым и для схемы понижения напряжения питания двигателя вентилятора, о которой будет рассказано чуть ниже. А сейчас выясним, как уменьшается производительность кулера при понижении питания. Для этого снимем зависимости частоты вращения крыльчатки от напряжения питания двигателя для разных вентиляторов (все они представлены на первой фотографии), зависимость частота/напряжение для "двухпроводных" вентиляторов, оказавшихся под переделкой, была подобной зависимости для третьего вентилятора с номинальной частотой вращения в 2400об./мин.




Видим, что частота вращения линейно зависит от напряжения питания вплоть до границы рабочего участка напряжения питания. Однако зависимость проходящего объёма воздуха от частоты вращения можно принять за квадратичную – исходя из этого можно понять, что чем тихоходнее двигатель, тем меньше в производительности мы потеряем при одинаковом уменьшении питающего напряжения по сравнению с более скоростными. При снижении напряжения питания, на мой взгляд, достаточно остановиться на границе в 8-9 вольт – во-первых, именно тут происходит резкое уменьшение акустического шума от вращающейся крыльчатки, и, во-вторых, падение производительности не так ещё ощутимо. Так как помимо снижения акустического шума мы преследуем ещё и задачи снижения импульсных помех, и нам предстоит параллельно питающим выводам двигателя вентилятора подключить конденсатор большой ёмкости, то следует каким-то образом ограничить начальный пусковой ток, значение которого будет складываться из тока заряда конденсатора и пускового тока самого двигателя – измеренные значения пускового тока у разных вентиляторов дали его значение не меньше удвоенного значения номинального тока. Лучшим решением этой задачи следует признать использование мощного полевого MOSFET-транзистора – из-за большого входного сопротивления затвора можно ограничиться во времязадающих цепях конденсаторами небольшой ёмкости – до 100мкФ.


Окончательной редакцией явилась следующая схема, настройка которой заключается в подборе ёмкости C1, при которой происходит плавное нарастание потребляемого тока при включении. В зависимости от типа полевого транзистора, можно получить на выходе напряжение в пределах 9.5-8.5 В. Я остановил свой выбор на IRFZ24N (по отношению цена/технические характеристики) – с ним напряжение на выходе при входном напряжении в 12В получается 8.8В. Эту схему можно слегка доработать – напряжение на затвор можно подавать со среднего выхода потенциометра, подключенного к питающим проводам, при шунтировании одного из плеч этого потенциометра терморезистором можно получить на выходе напряжение прямо или обратно пропорциональное изменению температуры. Кроме того, при необходимости повысить выходное напряжение, можно выводы стока и истока зашунтировать резистором сопротивлением около 50Ом.
В окончательном виде устройство выглядит так:


Полевой транзистор установлен на припаянный к контактной площадке медный фланец от подобного корпуса, перед припайкой которого следует снять фаску по его контуру. Температурный режим работы транзистора под нагрузкой в "один вентилятор" при таком охлаждении – 40 градусов. Монтаж выполнен на двухсторонней плате с использованием радиоэлементов для поверхностного монтажа (от старых плат ISA-устройств). Крепёж платы – по месту. Светодиоды выносятся на лицевую панель.

Автоматическое включение резервного вентилятора

Рассмотрим полную схему получившегося устройства.


Видим, что если исключить резистор R1 из схемы, то можно открывать ключ VT2 с помощью схемы, которая бы работала по следующему алгоритму – есть сигнал на открытие ключа при остановке двигателя другого вентилятора, нет сигнала – при нормальной работе двигателя вентилятора. Реализуем этот алгоритм с помощью простейшего детектора состояния датчика работы вентилятора.


При наличии вращения конденсатор C2 перезаряжается, что вызывает появление переменной составляющей на резисторе R6, положительная полуволна которой открывает транзистор VT2 и подзаряжает конденсатор C3, который не даёт закрыться транзистору VT2 во время отрицательной полуволны, которая через диод VD3 "садится" на схемный ноль. Для более чёткой работы детектора на месте этого диода лучше применять диоды с низким прямым напряжением, например, германиевые типа Д9. Я применил диод Д18. При отсутствии вращения конденсатор C3 разряжается через резисторы R6 и R7, а также через эмиттерный переход VT2. При этом напряжение на коллекторе VT2 повышается, что ведёт к открыванию полевого транзистора и подаче на резервный вентилятор напряжения питания.
Подбирая ёмкость конденсатора C3 можно обеспечить "тестирование" работы резервного вентилятора при первом включении в течение времени заряда этого конденсатора.
При замене основного вентилятора на исправный резервный вновь останавливается.

Вот полная схема такого устройства:



А вот его внешний вид в собранном состоянии:


Две платы датчика работы вентилятора установлены на кросс-плату, на которой находится детектор. Вентиляторы подсоединяются к стандартным трёхконтактным вилкам подключения вентиляторов. Питание можно подать, например, через стандартный разъём подключения вентиляторов (как на снимке). Вместо пар светодиодов можно применять двуханодные двухцветные светодиоды.

Литература по теме


  1. Журнал "Радио" №12, 2001г. "Ремонт вентиляторов электронных устройств", Р.Александров, стр.33-35.
  2. Журнал "Радио" №2, 2002г. "Звуковой сигнализатор неисправности вентилятора", Д.Фролов, стр.34

Собирая блок питания в корпусе от компьютерного БП, решил задействовать и кулер от ПК для охлаждения. На трансформаторе подходящих обмоток небыло, домотать не удалось, вот и решил подключить отдельно. Возле задней стенки и установленным трансформатором осталось пустое место с двумя стойками, туда и было задумано установить платку питания кулера. Сама схема питания кулера стандартная бестрансформаторная с гасящим конденсатором.

Балластный конденсатор С1 (неполярный, пленочный или металлобумажный, на напряжение не менее 400 В, а для надежности - лучше на все 630 В) при напряжении 220 В пропускает ток порядка 0,07 А на каждую микрофараду своей емкости. Точную формулу - "не знал, не знал да и забыл", но для практического применения этой цифры вполне достаточно (резистор R1 служит исключительно для разряда конденсатора после выключения). Фактически такое реактивное сопротивление является генератором переменного тока (больше тока конденсатор просто не пропустит). Плучается, что он может обеспечить до 0,14 А. Если надо больше - увеличивается емкость С1.

Напряжение выпрямляется диодным мостом VD1 и сглаживается конденсатором С2 на напряжение не менее 16 В. Стабилитрон VD2 служит для защиты С2 от пробоя, если вдруг что-то случится с кулером. Скорость оборотов регулируется токовым шунтом R2, "отсасывающим" на себя часть тока параллельно кулеру. R3 можно ставить, если не нужно снижать обороты до нуля. Номиналы подбирать "по месту". Выделяемая на R2,R3 мощность при токе 0,14 А не превысит 1,7 Вт.

Что касается конструкции - у меня задуман БП на 0-30 В 3А, и дополнительно питание 12 Вт паяльника на 6 В. Там две обмотки на 26 В и 6 В 3 А, чтоб хороший трансформатор попросту не валялся, решил его пристроить, да и мини паяльник стал чаще нужен. В архиве на форуме есть описание схемы, печатка простой платки и фото. Специально для сайта Радиосхемы - Igoran .

Обсудить статью ПОДКЛЮЧЕНИЕ КУЛЕРА КОМПЬЮТЕРА К 220В

Устройство компьютерного вентилятора. Как получить тахосигнал, если он не выведен наружу

Вентилятор в современном компьютере является пожалуй самым массовым устройством. Где они только не установлены? Блок питания, кулер процессора, кулер видеокарты, часто используется для дополнительного охлаждения винчестера, собственно в корпусе смонтированы 1-2 штуки. Итого минимум 4 штуки.

А не посмотреть ли, как он устроен? Fan, так сказать, on the inside?

Для экспериментов возьмем пару самых дешевых 80 мм вентиляторов на подшипниках скольжения (sleeve bearing), первый - обычный двухпроводный с разъемом molex, ценой рублей 25-35, второй - раза в 1,5-2 дороже, трехпроводный, с таходатчиком. Заодно посмотрим, насколько оправдана такая большая разница в цене.

Процесс разборки вентилятора несложен:
- снимаем фирменную наклейку,
- вынимаем резиновую заглушку-уплотнение
- с вала ротора аккуратно снимаем (иглой или чем-нибудь тонким и острым) разрезную фторопластовую шайбу.
На этом начальный этап разборки завершен - можно вынуть крыльчатку вентилятора.

Что мы видим:
1. обмотки двигателя вместе с магнитопроводом смонтированы неподвижно на корпусе вентилятора;
2. внутри крыльчатки расположен кольцевой магнит с замыкающим магнитный поток ярмом.

Такая конструкция двигателя называется с внешним ротором.

Привычных для коллекторных двигателей постоянного тока щеток нигде не видно. Как же происходит переключение тока в обмотках, чтобы ротор вращался? Для коммутации тока в обмотках используется специальная микросхема на основе датчика Холла. Датчик Холла выполнен из полупроводникового материала, чувствительного к магнитному полю.

Для вращения ротора необходимо переключать обмотки статора строго в определенный момент и в заданной последовательности.
Положение ротора (крыльчатки с кольцевым магнитом)определяется датчиком Холла, он же управляет расположенными в микросхеме коммутаторами. Кольцевой магнит имеет 4 полюса - N-S-N-S, поэтому при прохождении полюсов мимо датчика Холла, он вырабатывает два импульса за один оборот ротора. На выходах микросхемы, коммутирующих обмотки, формируются две противофазных последовательности импульсов. Сигнал с любого из этих выходов можно использовать для формирования тахосигнала - так делалось в микросхемах более ранних разработок. В настоящее время выпускаются микросхемы и с выходом тахосигнала.

Рассмотрим поподробнее платы вентиляторов.
На следующем рисунке слева приведена плата вентилятора с таходатчиком и рядом на рисунке справа ее схема:


Все очень просто - микросхема коммутирует обмотки, и имеет встроенный выход таходатчика. Выход таходатчика представляет собой открытый коллектор n-p-n транзистора. Понятие "открытый коллектор" обозначает, что он никуда не подключен, висит в воздухе. Такой выход используется обычно для согласования уровней напряжений. Подробнее о выходе таходатчика и его практическом использовании - в следующей статье.

На следующих рисунках приведена плата и схема вентилятора без выхода таходатчика. В глаза бросаются пустые места для установки элементов и жирная перемычка вместо диода.


Несложный анализ показывает - если установить 2 резистора и 1 транзистор на пустующие места, получим вентилятор с выходом таходатчика. Еще желательно установить диод на предназначенное ему место, а перемычку убрать - это позволит уменьшить уровень помех в цепи +12 В (правда при этом несколько снизится скорость вращения крыльчатки). После всех этих изменений плата и схема будут выглядеть как на следующем рисунках:


Номиналы резисторов R1, R2 возможно нужно будет уточнить для конктретного вентилятора. Транзистор VT1 можно использовать практически любой маломощный n-p-n типа.

Но даже если бы на плате не было предусмотрено места под установку этих элементов, их всегда можно добавить навесным монтажом.

В вентиляторах описанной конструкции всегда неявно присутствует тахосигнал - это сигнал коммутации обмоток. Поэтому достаточно добавить несколько копеечных деталей и получить снаружи вентилятора сигнал таходатчика. Цена всех этих дополнительных элементов примерно 1,5-2 рубля в розницу, а при массовом производстве - копеек 50. Выводы об обоснованности 1,5-2 кратной разницы в ценах вентиляторов с выходом таходатчика и без такового делайте сами.

Работа большинства электронных компонентов ПК сопровождается повышенным выделением тепла. Наиболее эффективным способом охлаждения является активный (принудительный, вентиляторный). Но все ли знают, как правильно подключить кулер к БП компьютера? Вот с этим подробно и разберемся.

В принципе, работа несложная – необходимо лишь установить кулер по месту и присоединить к нужным контактам блока питания компьютера его провода определенной расцветки. Но есть ряд нюансов, без учета которых правильного подключения не сделать.

Во-первых , в продаже встречаются компьютерные вентиляторы с различным исполнением разъемов. Они могут иметь от 2-х до 4-х контактов. А вот выводов у блока питания ПК, к которому производится подключение, всегда четыре.

Во-вторых , провода кулера могут иметь один из двух вариантов цветовой маркировки.

В-третьих , процессорам ноутбуков требуется особый температурный режим. Поэтому их вентиляторы включаются лишь периодически, по мере необходимости. С настольными компьютерами все иначе. Задача кулера – обеспечивать непрерывное охлаждение их электроники, то есть речь идет о его постоянной работе. И вот здесь уже выступает на первый план такой показатель, как «шумность» вентилятора. Именно поэтому желательно номинал питающего кулер напряжения (стандартные +12 В) хотя бы немного снизить. На эффективности охлаждения системного блока это существенно не отразится, а вот комфортность пользователя будет обеспечена.

Порядок подключения

Обесточить компьютер

Простое выключение ПК с помощью кнопки – не лучшее решение. Его необходимо полностью изолировать от электросети, то есть выдернуть вилку из розетки или поставить выключатель в положение «выкл».

Зафиксировать кулер по месту

Для этого нужно демонтировать боковую крышку, установить вентилятор на предназначенное для него место и закрепить его болтиками. Необходимо обратить внимание на указатель направления вращения его крыльчатки (стрелка на торцевой части кулера). В зависимости от того, как расположен вентилятор, воздушный поток может быть направлен как внутрь компьютера (втягивание), так и из него. А это напрямую отражается на эффективности охлаждения электроники системного блока. Чтобы не ошибиться, желательно замену кулера делать «один в один», поэтому снимать неисправный до приобретения нового не желательно.

Подключение к блоку питания

Автор не знает, какой именно вентилятор читатель станет устанавливать взамен вышедшего из строя. Это может быть изделие б/у от другого компьютера или приобретенное, но все они бывают различных модификаций. Поэтому далее рассматриваются лишь возможные варианты.

На фото приведена распиновка разъемов кулеров в зависимости от количества контактов. Если их число не совпадает с выводами БП компьютера, придется задействовать переходники. В скобках – цветовое обозначение проводников по второму варианту.

Маркировка проводов

  • +12 В – Кр (Жл).
  • -12 В – всегда черный.
  • Линия тахометра – Жл (Зел).
  • Управление скоростью – синий.

Распиновка блока питания компьютера
Распиновка разъема кулера

Если вентилятор довольно сильно шумит, то его можно запитать не 12 В, а семью (подключение к крайним выводам) или пятью (к красному). Провод «земля», как отмечено выше, всегда черный.

В некоторых статьях даются рекомендации по изменению скорости вращения крыльчатки с помощью ограничительных резисторов. Их мощность – порядка 1,2 – 2 Вт, и размеры соответствующие. Уже – не совсем удобно. В общем, с этим понятно. Но вот по каким критериям подобрать номинал сопротивления, если пользователь с эл/техникой в лучшем случае всего лишь на «вы»? А в худшем – никак.

Автор советует не экспериментировать и при желании включить в цепь диод. Независимо от типа он обязательно обеспечит определенное падение напряжения порядка от 0,6 до 0,85 вольт. Если требуется снизить номинал еще больше, можно последовательно задействовать 2 – 3 полупроводника. Для этого не нужно заниматься инженерными расчетами или консультироваться со специалистом.