Леонардо да винчи. Счетное устройство леонардо да винчи Счетная машина Леонардо да Винчи

«Компьютерные устройства» - Обычно, домой покупают цветные струйные принтеры. Аннотация. Функции компьютера. Ресурсы интернета:www.sipc.ru.; www.compsupport.ru; Компьютерная безопасность. Модем - устройство для выхода в Интернет по телефонной линии. МЯУ!.. и т.п.). Интернет - глобальная система передачи и хранения данных. Не жадничайте!

«Устройство интернета» - Звезда. Тема урока «Состав Интернет». Телеконференции. Хранилища файлов с программами и данными, доступные для пользователя через сеть. Доски объявлений. Структура Интернет. Интернет-телефония. Региональная сеть. Локальные сети. Существуют корпоративные, национальные и международные глобальные сети.

«Искусство Леонардо да Винчи» - Леонардо да Винчи был похоронен в замке Амбуаз. Конец жизни. «Благовещение». Леонардо да Винчи работал над аппаратом вертикального взлёта и посадки. На вертикальном «ornitottero» Леонардо планировал разместить систему втяжных лестниц. Ангел слева (левый нижний угол)- творение кисти Леонардо. Побежденный учитель.

«Работы Леонардо да Винчи» - Изобретения Леонардо Да Винчи. Новые декораторские работы Леонардо да Винчи. 1519 г. 23 апреля. Леонардо в Амбуазе. 1517 г. 1 октября. Жизнь Леонардо Да Винчи. МИЛАН И ФЛОРЕНЦИЯ 1507 г. Смерть Франческо, дяди Леонардо. Хлопоты о наследстве. 1507 г. Октябрь. Отъезд в Рим через Флоренцию. Встреча Франциска I. 1515 г. 8-15 декабря.

«Устройство ЭВМ» - ЭВМ для вычислений. Системное ПО делится на: Операционные системы. В ПК используется структура с одним общим интерфейсом, называемым системной шиной. Для эффективного управления ресурсами ЭВМ стали впервые использоваться ОС. Программно-аппаратный контроль. 1.7 Внешнее запоминающие устройство. Пу. Медленный ответ (кэш-промах).

«Леонардо да Винчи» - 1502 - поступает на службу к Чезаре Борджиа в качестве архитектора и военного инженера. 1514-1516 - работа над картиной «Иоанн Креститель». 1472-1477 - работа над: «Крещение Христа», «Благовещение», «Мадонна с Вазой». 1503 - возвращение во Флоренцию. 1509 - роспись в соборе Святой Анны. 1503 - картины «Битва в Анджарии (при Ангиари)» и «Мона Лиза».

«Основы Windows» - Панель задач. Папка может быть пустой. Ярлыки (Shortcuts). Основные объекты. Основы работы с операционной системой WINDOWS. Окно документа. Окно приложения. Основные средства управления – графический манипулятор (мышь или иной аналогичный) и клавиатура. Папки. Основные понятия. Значки – графическое представление объекта.

«Блок-схема» - Язык блок - схем. Основные блоки. Вычисление площади поверхности фигуры по формуле: S=2al+a2.(a=3,l=2). Составьте алгоритм вычисления выражения у=2х+в, х=5, в=5. Язык блок – схем является одним из способов символической записи алгоритмов. Внутри блока дается описание соответствующего действия. Составьте алгоритм для вычисления выражения (а+d(n-1))n/2=y при a=10,d=2,n=3.

«Файлы и папки» - Значки и Ярлыки. COM, EXE - выполняемые файлы. Рабочий стол – рабочая поверхность экрана, главная папка в Windows. Шаблон (маска) файла. Значок программы EXCEL. Ярлык служит для ускорения запуска программ или документов. Корневой каталог. Значок (иконка) обычной папки в windows. Файл - текст или совокупность данных с уникальным именем, хранящиеся на диске.

«Устройства вывода информации» - Качество изображения определяется разрешающей способностью монитора. Качество изображения определяется количеством точек, из которых оно складывается. Чем больше разрешающая способность монитора, тем выше качество изображения. Устройства вывода информации. Лазерные принтеры. Недостатки струйных принтеров: Большой расход чернил; Высокая стоимость заправки.

«Файл и файловая система» - Иерархическая файловая система. Придумай имя графического файла, в котором будет содержаться рисунок твоего дома. Файл и файловая система. Характеристики файла, наделяющие файл определенными свойствами. Каталог содержит имя файла и указание на начало его размещения на диске. Придумай имя текстового файла, в котором будет содержаться информация о твоем доме.

«Информационные процессы» - Информационные процессы в науке. Посмотрев новости, я также получаю информацию. Информационные революции. Характеристики индустриального общества. Внедрение последних достижений научно – технической мысли: изобретений, идей, предложений. Иформационный процесс – процесс, в результате которого осуществляется прием, передача информации.

Всего в теме 44 презентации

краткое содержание других презентаций

«История средств вычислительной техники» - Эффективное видеотерминальное устройство общения. Основоположник компьютерной техники в СССР. Появление приборов. Рост использования компьютеров. Полупроводниковые машины на транзисторах. Открытие логарифмов. Интегральные схемы. Склад. Академик Сергей Алексеевич Лебедев. Настоящее время. Аналитическая машина. Суперкомпьютеры. Абак. Руководители Microsoft. Счетная машина. I поколение ЭВМ. ЭНИАК. Вычислительные системы.

«Тенденции развития вычислительной техники» - Древние люди. Первый программист. Первое поколение ЭВМ. Машина Шиккарда. Магнитная лента. Управление памятью. Энигма. Аналитическая машина Бэббиджа. Хранение данных на бумажной ленте. Абак. История развития вычислительной техники. Первые средства счета. Марк-I. Конрад Цузе. Поколения компьютеров. Усовершенствованный арифмометр. Механический калькулятор. Большая электронно-счетная машина. Арифмометр Лейбница.

«Счётные машины» - Изобретение механического калькулятора. Счетные машины. Идея создания аппарата. Как начинался счёт. Кассовый аппарат. Изобретение компьютера. Русские счеты. Римляне усовершенствовали конструкцию. Изобретение счёт. Цельные кукурузные початки. Аппарат фиксировал каждую торговую операцию. Работающий программируемый компьютер. Изобретение ККМ. Обсерватория. Паскаль. У китайцев в основе счета лежала не десятка, а пятерка.

«История программного обеспечения» - Специальные программы, называемые языковыми процессорами. Деривационная семантика описывает последствия выполнения конструкций. Ада Лавлейс (1815-1852). Набор лексических, синтаксических и семантических правил. Классификация. Первый полностью объектно-ориентированный язык программирования. Лексика. История алгоритмических языков. Язык Кобол. Многоядерная структура ОС. Язык программирования Паскаль (Pascal) создан швейцарцем Н.Виртом.

«История вычислительной техники» - Начало счета. Говард Айкен. Характеристика поколений ЭВМ. Сотрудники лаборатории. Вид инструментального счета. Путешествие. Эра персональных компьютеров. Конрад Цузе. Вклад русских ученых. Вычислительные машины. Цифровые вычислительные устройства. Поколения ЭВМ. Первое поколение ЭВМ. Прошлое. Римский абак. Блез Паскаль. История вычислительной техники.

«История создания и развития ЭВМ» - В 1958 году Джон Килби впервые создал опытную интегральную схему. Машина Лейбница. Пафнутий Львович Чебышев сконструировал счетную машину. Доэлектронный период. Четвертое поколение. Аналитическая машина Беббиджа. Первая в мире ЭВМ – ENIAC. Американская фирма intel объявила о создании микропроцессора. Второе поколение ЭВМ. Пятое поколение. Табулятор. Паскалина. Первое поколение ЭВМ. В 60 – х годах транзисторы стали элементной базой для ЭВМ.

Этапы развития вычислительной техники

Выполнил: Ворошилов И.А.

Проверила:

Введение 3

Ранние приспособления и устройства для счёта 3

Этапы развития вычислительной техники 4

Домеханический этап 4

Механический этап 5

Электромеханический этап 11

Суммирующая машина Паскаля 14

История 14

Калькулятор Лейбница 16

История создания 16

Арифмометр 18

Разностная машина Чарльза Бэббиджа 20

История создания 20

Аналитическая машина 24

Заключение 25

Список литературы 26

Приложение 27

Список иллюстраций 27

Введение Ранние приспособления и устройства для счёта

Человечество научилось пользоваться простейшими счётными приспособлениями тысячи лет назад. Наиболее востребованной оказалась необходимость определять количество предметов, используемых в меновой торговле. Одним из самых простых решений было использование весового эквивалента меняемого предмета, что не требовало точного пересчёта количества его составляющих. Для этих целей использовались простейшие балансирные весы, которые стали, таким образом, одним из первых устройств для количественного определения массы.

Принцип эквивалентности широко использовался и в другом, знакомом для многих, простейшем счётном устройств Абак или Счёты. Количество подсчитываемых предметов соответствовало числу передвинутых костяшек этого инструмента.

Сравнительно сложным приспособлением для счёта могли быть чётки, применяемые в практике многих религий. Верующий как на счётах отсчитывал на зёрнах чёток число произнесённых молитв, а при проходе полного круга чёток передвигал на отдельном хвостике особые зёрна-счётчики, означающие число отсчитанных кругов.

Этапы развития вычислительной техники Домеханический этап

Ручной период автоматизации вычислений начался на заре человеческой цивилизации и базировался на использовании частей тела,

Рисунок 1. Суань-пань

в первую очередь пальцев рук и ног. Пальцевый счет уходит корнями в глубокую древность, встречаясь в том или ином виде у всех народов и в наши дни. Конечно, счёт был примитивным, а уровень абстракции очень низким. Понятие числа максимально конкретно, оно неразрывно связано с предметом (т.е. это, например, не число «два», а «две рыбы», «два коня» и т.д.). Диапазон счёта невелик. Можно выделить три типа таких счётных приспособлений. Искусственные приспособления: зарубки (насечки) на различных предметах, в Южной Америке получают широкое распространение узелки на верёвках. Предметный счёт, когда используются предметы типа камешков, палочек, зёрен и т.д. Часто этот тип счёта использовался вместе с пальцевым. Счёт с помощью предметов был предшественником счёта на абаке - наиболее развитом счётном приборе древности, сохранившем некоторое значение в настоящее время (в виде русских счётов, китайского суань-паня и др.). Под абаком понимается счётный прибор, на котором отмечены места (колонки или строчки) для отдельных разрядов чисел.

Механический этап

Рисунок 2. Леонардо да Винчи (Leonardo da Vinci, 1452–1519)

Под механическим вычислительным устройством понимается устройство, построенное на механических элементах и обеспечивающее автоматическую передачу из низшего разряда в высший. Один из первых арифмометров, точнее «суммирующая машина», был изобретен Леонардо да Винчи (Leonardo da Vinci, 1452–1519) около 1500 года. Правда, о его идеях никто не знал на протяжении почти четырех столетий. Рисунок этого устройства был обнаружен только в 1967 году, и по нему фирма IBM воссоздала вполне работоспособную 13-разрядную суммирующую машину, в которой использован принцип 10-зубых колес.

Десятью годами раньше в результате исторических изысканий в Германии были обнаружены чертежи и описание арифмометра, выполненные в 1623 году Вильгельмом Шиккардом (Wilhelm Schickard, 1592–1636), профессором математики университета в Тюбингене. Это была весьма «продвинутая» 6-разрядная машина, состоявшая из трех узлов: устройства сложения-вычитания, множительного устройства и блока записи промежуточных результатов. Если сумматор был выполнен на традиционных зубчатых ко-лесах, имевших кулачки для передачи в соседний разряд единицы переноса, то множитель был построен весьма изощренно. В нем немецкий профессор применил метод «решетки», когда при помощи «насаженной» на валы зубчатой «таблицы умножения» происходит перемножение каждой цифры первого сомножителя на каждую цифру второго, после чего со сдвигом складываются все эти частные произведения.

Рисунок 3. Блез Паскаль (Blaise Pascal, 1623–1662)

Эта модель оказалась работоспособной, что было доказано в 1957 году, когда она была воссоздана в ФРГ. Однако неизвестно, смог ли сам Шиккард построить свой арифмометр. Есть свидетельство, содержащееся в его переписке с астрономом Иоганном Кеплером (Johannes Kepler, 1571–1630) относительно того, что недостроенная модель погибла в огне во время пожара в мастерской. К тому же автор, вскоре скончавшийся от холеры, не успел внедрить в научный обиход сведения о своем изобретении, и о нем стало известно лишь в середине ХХ века.

Поэтому Блез Паскаль (Blaise Pascal, 1623–1662), который первым не только сконструировал, но и построил работоспособный арифмометр, начинал, как говорится, с ну-ля. Блистательный французский ученый, один из создателей теории вероятностей, автор нескольких важных математических теорем, естествоиспытатель, открывший атмосферное давление и определивший массу земной атмосферы, и выдающийся мыслитель, был в повседневной жизни любящим сыном президента королевской палаты сборов. Девятнадцатилетним юношей, в 1642 году, желая помочь отцу, тратившему много времени и сил, составляя финансовые отчеты, он сконструировал машину, которая могла складывать и вычитать числа.

Первый образец постоянно ломался, и через два года Паскаль сделал более совершенную модель. Это была чисто финансовая машина: она имела шесть десятичных раз-рядов и два дополнительных: один поделенный на 20 частей, другой на 12, что соответствовало соотношению тогдашних денежных единиц (1 су = 1/20 ливра, 1 денье = 1/12 су). Каждому разряду соответствовало колесо с конкретным количеством зубцов.

За свою недолгую жизнь Блез Паскаль, проживший всего 39 лет, успел сделать около пятидесяти счетных машин из самых разнообразных материалов: из меди, из различных пород дерева, из слоновой кости. Одну из них ученый преподнес канцлеру Сегье (Pier Seguier, 1588–1672), какие-то модели распродал, какие-то демонстрировал во время лекций о последних достижениях математической науки. 8 экземпляров дошло до наших дней.

Рисунок 4. Готфрид Лейбниц (Gottfried Leibniz, 1646–1716)

Именно Паскалю принадлежит первый патент на «Паскалево колесо», выданный ему в 1649 году французским королем. В знак уважения к его заслугам в области «вычислительной науки», один из современных языков программирования назван Паскалем.

Классическим инструментом механического типа является арифмометр (устройство для выполнения четырёх арифметических действий), изобретённый Готфридом Лейбницем (Gottfried Leibniz, 1646–1716) в 1673 году. Полученная в результате напряженного поиска 8-разрядная модель могла складывать, вычитать, умножать, делить, возводить в степень. Результат умножения и деления имел 16 знаков. Лейбниц применил в своем арифмометре такие конструктивные элементы, которые использовались при проектировании новых моделей вплоть до ХХ века. В XVII-XVIII вв. сколько-нибудь значительной практической потребности в механизации вычислительных работ не существовало. Интерес к механизации вычислений был вызван, в частности, общефилософскими и общенаучными установками того времени, когда законы и принципы механики рассматривались как общие законы бытия. В XIX в. в связи с развитием промышленной революции, возникает потребность в механизации конторских работ.

Рисунок 5. Арифмометр

Пионером серийного изготовления счетных машин стал эльзасец Шарль-Ксавье Тома де Кольмар (Charles-Xavier Thomas de Colmar, 1785–1870). Введя в модель Лейбница ряд эксплуатационных усовершенствований, он в 1821 году начинает выпускать в своей парижской мастерской 16-разрядные арифмометры, которые получают известность как «томас-машины». На первых порах они стоили недешево - 400 франков. И выпускались в не столь уж и больших количествах - до 100 экземпляров в год. Но к концу века появляются новые производители, возникает конкуренция, цены понижаются, а количество покупателей возрастает.

Различные конструкторы как в Старом, так и в Новом свете патентуют свои моде-ли, которые отличаются от классической модели Лейбница лишь введением дополнительных удобств в эксплуатации. Появляется звонок, сигнализирующий об ошибках типа вычитания из меньшего числа большего. Наборные рычажки заменяются клавишами. Приделывается ручка для переноса арифмометра с места на место. Повышаются эргономические показатели. Совершенствуется дизайн.

В конце XIX века на мировой рынок арифмометров самым решительным образом вторглась Россия. Автором этого прорыва стал обрусевший швед Вильгодт Теофилович Однер (1846–1905), талантливый изобретатель и удачливый бизнесмен. До того, как заняться выпуском счетных машин, Вильгодт Теофилович сконструировал устройство автоматизированной нумерации банкнот, применявшееся при печатании ценных бумаг. Ему принадлежит авторство машины для набивки папирос, автоматического ящика для голосования в Государственной Думе, а также турникетов, применявшиеся во всех су-доходных компаниях России.

В 1875 году Однер сконструировал свой первый арифмометр, права на производство которого передал машиностроительному заводу «Людвиг Нобель». Спустя 15 лет, став владельцем мастерской, Вильгодт Теофилович налаживает в Петербурге выпуск новой модели арифмометра, которая выгодно отличается от существовавших на тот момент счетных машин компактностью, надежностью, простотой в обращении и высокой производительностью.

Рисунок 6. Чарльз Бэббидж (Charls Babbige, 1791-1871)

Спустя три года мастерская становится мощным заводом, производящим в год более 5 тысяч арифмометров. Изделие с клеймом «Механический завод В. Т. Однер, С-Петербург» начинает завоевывать мировую популярность, ему присуждаются высшие награды промышленных выставок в Чикаго, Брюсселе, Стокгольме, Париже. В начале ХХ века арифмометр Однера начинает доминировать на мировом рынке. Таким образом к концу XIX в. производство арифмометров становится массовым.

Однако предшественником современных ЭВМ является аналитическая машина Чарльза Бэббиджа. Проект аналитической машины, представляющей собой цифровую вычислительную машину с программным управлением, был предложен Бэббиджем в 30-е годы XIX века. А в 1843 г. для этой машины была создана первая достаточно сложная машинная программа: программа вычислений чисел Бернулли, составленная Адой Лав-лейс. Оба эти достижения были феноменальными. Они более чем на столетие опередили своё время. Только в 1943 г. американец Говард Эйкен с помощью работ Бэббиджа на основе техники XX века - электромеханических реле - смог построить такую машину под названием «Марк-1».

Историю механического этапа развития вычислительной техники можно начать вести с 1492 года, когда Леонардо да Винчи (1452-1519) разработал чертеж счетной машины и описал его в своих дневниках, ныне известных, как двухтомник «Мадридский Кодекс».

Среди чертежей первого тома «Мадридского кодекса», почти полностью посвященного прикладной механике, ученые обнаружили эскиз 13-разрядного суммирующего устройства с десятизубцовыми кольцами.

Основу счетной машины составляли стержни с двумя зубчатыми колесами, большое - с одной стороны и маленькое - с другой. Как видно из эскиза Леонардо да Винчи, эти стержни располагались так, чтобы маленькое колесо на одном стержне входило в сцепление с большим колесом на соседнем стержне. Таким образом десять оборотов первого стержня приводили к одному полному обороту второго стержня, а десять оборотов второго - к одному полному обороту третьего стержня и так далее. Вся система состояла из тринадцати стержней и приводилась в движение набором грузов.

Вероятно, при жизни Леонардо да Винчи счетная машина не была создана.

Спустя почти 150 лет со дня изобретения счетной машины Леонардо да Винчи, в 1623 году в письме Иоганну Кеплеру немецкий профессор математики и астрономии Вильгельм Шикард (1592-1635) написал о машине, которая способна вычитать и складывать, а с помощью особых приспособлений на корпусе - еще и умножать, и приложил эскиз устройства. Это был шести разрядный механический калькулятор, получивший название «Вычисляющие часы». Устройство было названо часами, потому что его принцип работы основывался на использовании звёздочек и шестерёнок, как и в настоящих часах, а когда результат превышал резервы памяти, раздавался звон колокольчика.

Вычисляющие часы – первое механическая счетная машина, позволяющая складывать, вычитать, делить и умножать числа. Однако, она была известна довольно узкому кругу лиц, и поэтому долгое время (почти 300 лет со дня ее изобретения) первой счетной машиной считалось изобретение Блеза Паскаля (Пасклин).

История «вычисляющих часов» трагична. Два изготовленных экземпляра машины, один из которых предназначался Кеплеру, сгорели во время пожара. О самом проекте забыли на долгие годы, и чертежи устройства были утеряны из-за бушующей в тот период Тридцатилетней войны (1618-1648 гг), и только в 1935 году они были найдены. Найдены только для того, чтобы быть потерянными снова по причине второй мировой войны (1941-1945 гг).

И только спустя 21 год, в 1956 году в городской библиотеке Штутгарта была найдена фотокопия эскиза «вычисляющих часов», и в 1960 группа энтузиастов, на основе этой фотокопии и писем Шиккарда, сумели построить действующую модель «вычисляющих часов».

Начало развития технологий принято считать с Блеза Паскаля , который в 1642г. изобрел устройство, механически выполняющее сложение чисел ("Паскалин"). Его машина предназначалась для работы с 6-8 разрядными числами и могла только складывать и вычитать, а также имела лучший, чем все до этого, способ фиксации результата. Машина выполняла суммирование чисел (восьмиразрядных) с помощью колес, которые при добавлении единицы поворачивались на 360 и приводили в движение, следующее по старшинству, колесо всякий раз, когда цифра 9 должна была перейти в значение 10. Машина Паскаля имела размеры 36х13х8 сантиметров. Этот небольшой латунный ящичек было удобно носить с собой. Инженерные идеи Паскаля оказали огромное влияние на многие другие изобретения в области вычислительной техники.

Следующего этапного результата добился выдающийся немецкий математик и философ Готфрид Вильгельм Лейбниц , высказавший в 1672 году идею механического умножения без последовательного сложения. Уже через год он представил машину, которая позволяла механически выполнять четыре арифметических действия, в Парижскую академию. Машина Лейбница требовала для установки специальный стол, так как имела внушительные размеры: 100х30х20 сантиметров.

Значительный вклад в развитие вычислительной техники внёс английский математик и изобретатель Чарльз Бэббидж . Идея построения «разностной машины» для вычисления навигационных, тригонометрических, логарифмических и других таблиц возникла у него в 1812 году. Название она получила из-за использования метода «конечных разностей». Свою первую разностную машину Бэббидж построил в 1822 году. Однако из-за нехватки средств эта машина не была закончена, и сдана в музей Королевского колледжа в Лондоне, где она хранится по сегодняшний день. Однако эта неудача не остановила Бэббиджа. Около 1833 года ему пришла в голову идея «аналитической машины», после чего он разностную машину практически похоронил, так как возможности новой машины значительно перекрывали возможности разностной, она выполняла вычисления без участия человека. Ч.Беббидж предложил так называемый принцип программного управления. Сущность его состоит в том, что вычислительная машина автоматически решает поставленную задачу, если в нее заранее вводится программа, определяющая последовательность выполняемых действий. В сконструированной им в 1834 г. «аналитической машине», эта программа задавалась в виде системы пробивок (перфораций) на соответствующих перфокартах. Такие перфокарты были впервые предложены в начале XIX в. англичанином Ж. Жаккардом для управления ткацким производством. Это был первый пример автоматизации средств производства.

Научные идеи Бэббиджа увлекли дочь известного английского поэта лорда Байрона- графиню Аду Августу Лавлейс . В то время еще не возникли такие понятия, как ЭВМ, программирование, и, тем не менее, Аду Лавлейс по праву считают первым в мире программистом. Дело в том, что Бэббидж не составил не одного полного описания изобретенной им машины. Это сделал один из его учеников в статье на французском языке. Ада Лавлейс перевела ее на английский язык, и не просто перевела, а добавила собственные программы, по которым машина могла бы проводить сложные математические расчеты. В результате первоначальный объем статьи увеличился втрое, и Бэббидж получил возможность продемонстрировать мощь своей машины. Многими же понятиями, введенными Адой Лавлейс в описания тех первых в мире программ, широко пользуются современные программисты.

С 1842 по 1848 год Бэббидж упорно работал, расходуя собственные средства. К сожалению, он не смог довести до конца работу по созданию «аналитической машины» – она оказалась слишком сложной для техники того времени. После смерти Ч. Беббиджа Комитет Британской научной ассоциации, куда входили крупные ученые, рассмотрел вопрос, что делать с неоконченной аналитической машиной и для чего она может быть рекомендована. К чести Комитета было сказано: "...Возможности аналитической машины простираются так далеко, что их можно сравнить только с пределами человеческих возможностей... Успешная реализация машины может означать эпоху в истории вычислений, равную введению логарифмов". Но заслуга Бэббиджа в том, что он впервые предложил и частично реализовал идею программно-управляемых вычислений. Именно «аналитическая машина» по своей сути явилась прототипом современного компьютера и содержала:

ОЗУ на регистрах из колес (Бэббидж назвал его «store» - склад),

АЛУ – арифметико-логическое устройство («mill» - мельница),

Устройство управления и устройства ввода-вывода, последних было даже целых три: печать одной или двух копий (!), изготовление стереотипного отпечатка и пробивка на перфокартах. Перфокарты служили для ввода программ и данных в машину. ОЗУ имело емкость 1000 чисел по 50 десятичных знаков, то есть около 20 килобайт. Заслуги Бэббиджа и Лавлейс значительны: они стали провозвестниками компьютерной эры, наступившей только через 100 лет. В их честь назвали языки программирования – АДА и БЭББИДЖ.

Уроженец Эльзаса Карл Томас , основатель и директор двух парижских страховых обществ в 1818 году сконструировал счетную машину, уделив основное внимание технологичности механизма, и назвал ее арифмометром. Уже через три года в мастерских Томаса было изготовлено 16 арифмометров, а затем и еще больше. Таким образом, Томас положил начало счетному машиностроению. Его арифмометры выпускали в течение ста лет, постоянно совершенствуя и меняя время от времени названия.

Начиная с XIX века, арифмометры получили очень широкое применение. На них выполнялись даже очень сложные расчеты, например, расчеты баллистических таблиц для артиллерийских стрельб. Существовала даже особая профессия – счетчик – человек, работающий с арифмометром, быстро и точно соблюдающий определенную последовательность инструкций (такую последовательность действий впоследствии стали называть программой). Но многие расчеты производились очень медленно, т.к. при таких расчетах выбор выполняемых действий и запись результатов производились человеком, а скорость его работы весьма ограничена. Первые арифмометры были дороги, ненадежны, сложны в ремонте и громоздки. Поэтому в России стали приспосабливать к более сложным вычислениям счеты. Например, в 1828 году генерал-майор Ф.М.Свободской выставил на обозрение оригинальный прибор, состоящий из множества счетов, соединенных в общей раме. Основным условием, позволявшим быстро вычислять, было строгое соблюдение небольшого числа единообразных правил. Все операции сводились к действиям сложения и вычитания. Таким образом, прибор воплощал в себе идею алгоритмичности.

Пожалуй, одно из последних, принципиальных изобретений в механической счетной технике было сделано жителем Петербурга Вильгодтом Однером . Построенный Однером в 1890 году арифмометр фактически ничем не отличается от современных подобных ему машин. Почти сразу Однер с компаньоном наладил и выпуск своих арифмометров - по 500 штук в год. К 1914 году в одной только России насчитывалось более 22 тысяч арифмометров Однера. В первой четверти XX века эти арифмометры были единственными математическими машинами, широко применявшимися в различных областях деятельности человека. Начиная с 1931 года, в СССР выпускается арифмометр ”Феликс”, один из вариантов арифмометра Однера. В России эти, громко лязгающие во время работы, машинки получили прозвище «Железный Феликс». Ими были оснащены практически все конторы.